Phase II Environmental Site Assessment Report

Former Markwardt Brothers Garage North 1st Avenue and West Chocktoot Street Chiloquin, Klamath County, Oregon 97624

Prepared for: City of Chiloquin, Oregon Oregon DEQ ECSI No. 6462

November 2, 2021

Document Information

Prepared for

Project Name

Cardo Project#

Date

City of Chiloquin

CHILOQ100

November 2021

USA

127 North 1st Avenue Chiloquin, Oregon 97624,

Phase II Environmental Site Assessment Report 0BFormer Markwardt Brothers Garage

Contact Information

Cardno 6611 Bay Circle Suite 220 Norcross, Georgia 30071, USA Telephone: +1 (678) 433 1197 www.cardno.com

Author(s)

W. Ashton Smithwick Geologist I

Approved By

Keith J. Ziobron, P.E. Branch Manager

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1.0	09.08.2021	Draft	Ashton Smithwick	Sam Urban
1.0	11.02.2021	Draft		Keri Chappell

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Λ

Table of Contents

1	Introd	uction		1
	1.1	Purpos	e	1
	1.2	Site Lo	cation / Description	1
	1.3	Site His	story	1
	1.4	Current	t Adjacent Land Uses	2
	1.5	Previou	us Environmental Assessments	2
	1.6	Limitati	ons / Exceptions of Assessment	4
	1.7	Special	I Terms and Conditions (User Reliance)	4
2	Benef	icial Lan	d and Water Use	6
	2.1	Locality	y of the Facility	6
	2.2	Land U	se Determination	6
	2.3	Ground	lwater Use	6
	2.4	Surface	e Water	6
	2.5	Benefic	cial Water Use Determination	6
3	Phase		Activities	7
-	3.1		ng Objectives	
		3.1.1	Conceptual Site Model and Sampling Plan	
		3.1.2	Chemical Testing Plan/QAQC	
		3.1.3	Deviations from Phase II ESA Work Plan	
	3.2	Field In	vestigation and Methods	
		3.2.1	Soil Boring Installations & Sampling Activities	
		3.2.2	Temporary Monitoring Well Installation & Groundwater Sampling Activities	
		3.2.3	Investigation Derived Waste	10
		3.2.4	Ground Penetrating Radar	10
		3.2.5	Debris Characterization Analysis	10
4	Enviro	onmental	Assessment Results	12
	4.1	Site Ge	eology	12
	4.2	Site Gr	oundwater	12
	4.3	Analytic	cal Data Results	12
		4.3.1	Soil	12
		4.3.2	Groundwater	12
		4.3.3	Quality Assurance and Quality Control Methods	12
		4.3.4	Debris Characterization Analysis	13
5	Conce	eptual Sit	te Model	14
	5.1	Source	s	14
	5.2	Potenti	al Exposure Pathways and Receptors	14
	5.3	Risk-Ba	ased Screening of Laboratory Analytical Data	15
		5.3.1	Soil	
		5.3.2	Groundwater	16
6	Discu	ssion of	Findings	17
	6.1	Recogr	nized Environmental Conditions	17

	6.2	Affected	Media	17
	0.2	6.2.1	Soil Impacts	
		6.2.2	Groundwater Impacts and Shallow Depth to Groundwater	
		6.2.3	Debris Characterization	17
	6.3	Vapor In	trusion Screening	17
7	Phase	e II ESA Co	onclusions & Recommendations	18
8	Quali	fications/S	Signatures of Environmental Professional(s)	19
9	Refer	ences		20

Figures

_Site Vicinity Map
_Site Boundary Map
Soil Boring Location Map
Temporary Monitoring Well Location Map
_Potential UST Location Map

Tables

Table 1	Soil Analytical Summary
Table 2	Groundwater Analytical Summary
Table 3	_Summary of Bulk Sample Analysis
Table 4	Summary of Toxicity Characterization Leaching Procedure
Table 5	Groundwater Depth Summary

Appendices

Appendix A	Previous Environmental Report(s) Excerpts
Appendix B	_Soil Boring Logs
Appendix C	Groundwater Sampling Logs
Appendix D	_Laboratory Analytical Report(s)
Appendix E	GPR Data Inc., Ground Penetrating Radar Survey, August 18, 2021

1 Introduction

1.1 Purpose

Cardno was retained by the City of Chiloquin (Client) to conduct this Phase II Environmental Site Assessment (ESA) of the Former Markwardt Brothers Garage property, located northeast of the North 1st Avenue and West Chocktoot Street intersection in Chiloquin, Klamath County, Oregon (**Figure 1**), herein referred to as the "Subject Property" or "Site." In addition, the Subject Property was entered into the Voluntary Letter Agreement (ECSI No. 6462) with the Oregon Department of Environmental Quality on June 4, 2021. This investigation was conducted in general conformance with the scope and limitations outlined by *ASTM Standard E1903-19*; however, the specific scope of work was negotiated between the Client and Cardno to meet the objectives of the Client.

The primary objective of the Phase II ESA was to further evaluate the identified recognized environmental conditions (RECs) (as defined in *ASTM Standard E1527-13*) and to provide sufficient information regarding the nature and extent of contamination to assist in making informed business decisions about the property; and, where applicable, providing the level of knowledge necessary to satisfy the Landowner Liability Protection provisions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). RECs are defined by *ASTM Standard E1527-13* as: "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substance or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property."

Oregon Department of Environmental Quality (ODEQ) issued a Voluntary Letter Agreement letter on June 3, 2021, accepting the Site into the ODEQ Voluntary Cleanup Plan (ECSI No. 6462). This assessment was completed in accordance with the Phase II Environmental Site Assessment Work Plan (Cardno, 2021c).

1.2 Site Location / Description

The Subject Property is comprised of two tax parcels (Parcel ID 3407-034DC-00400 & Parcel ID 3407-034DC-00500), currently owned by Klamath County, located at the center of downtown Chiloquin, Oregon, as shown on **Figure 2**. The Subject Property is bound by a commercial facility to the north, undeveloped/vacant land to the northeast, multi-commercial facility to the east, Sky Lakes Wilderness Adventures and Klamath Tribal Courts & Child Support Enforcement Office to the southeast, the Hirvi building to the south, a former gas station to the west, and the former Union Oil Bulk Plant property to the southwest. According to the Klamath County Tax Assessor's website, the Site encompasses two parcels totaling approximately 0.55-acre. The Subject Property is developed with a single-story commercial building of concrete block and brick facade construction. A second building, historically occupied by the Chiloquin Mercantile, partially collapsed and was demolished with the exception of a vault. The associated rubble remains on-Site. The building is currently vacant and in the care of Klamath County.

1.3 Site History

According to the current property owner, the on-Site commercial structure was constructed in the late 1920s or early 1930s. The building previously supported a car dealership, grocery, bicycle repair shop, music school, and auto-body shop. The building formerly located on the north parcel was constructed during the same time-period and operated as the Chiloquin Mercantile. It was vacated at an unknown date, and collapsed in 2019. The collapsed building remains on-Site, described throughout this report as the debris pile.

1.4 Current Adjacent Land Uses

The Site is located in a commercial area of Chiloquin. Specific adjoining property uses are detailed in the following table:

Direction from Property	Occupant(s) Name	Current Use	Environmental Concerns				
South	Hirvi Building	Commercial	None				
West	Former Texaco Gas Station	Commercial	Historical REC #1				
Northwest	Vacant	Undeveloped/Vacant	None				
North	Vacant	Commercial	None				
Northeast	Undeveloped/Vacant	Undeveloped/Vacant	None				
East	Vacant/Multi-Commercial facility	Vacant Commercial	None				
Southeast	Sky Lakes Wilderness Adventures	Commercial	None				
Southeast	Klamath Tribal Courts & Child Support Enforcement Office	Municipal	None				

1.5 Previous Environmental Assessments

Cardno completed a Phase I ESA and Asbestos and Lead-Based Paint Assessment on the Subject Property dated May 17, 2021 (Cardno, 2021a, 2021b). Through the review of historical records, interviews, and site reconnaissance, this assessment identified several RECs in connection with the Subject Property, including the following:

On-Site REC

1. According to the 1931 Sanborn Fire Insurance Map (FIM), the building was used as an auto repair garage (east portion), and "Gas & Oil" facility (southwest area). During site reconnaissance, Cardno personnel identified a potential underground storage tank (UST) vent pipe attached to the west interior wall of the on-Site building in an area consistent with the FIM gasoline station location. Therefore, there is potential for historical bulk storage and dispensing of petroleum products on the Subject Property, which may have impacted the soil, groundwater, and/or vapor at the Subject Property.

2. The remains of three in-ground hydraulic lifts and one oil-changing pit were observed in the building. According to the 1931 Sanborn FIM, the on-Site building is labeled as being an auto repair/garage facility. Additionally, based on the age of the building, this time-frame predates the regulation of the storage/disposal of hazardous substances such as used oil and other non-regulated automobile chemicals. Based on the age and duration of use, the in-ground lifts and unknown chemical management and disposal practices associated with historic operations, soil, groundwater, and/or vapor may have been impacted by historic Site operations.

3. During site reconnaissance, Cardno identified a second potential vent pipe in the interior of the building along the eastern wall. This feature is an indication of a second petroleum product UST and/or heating oil tank to exist on the Subject Property. Based on the age and duration of the former use of the building, there is potential for a UST/heating oil tank on the property that may have impacted the soil, groundwater, and/or vapor at the Subject Property.

Off-Site RECs

4. According to the 1931 Sanborn FIM, a Printing facility was located approximately 80 feet to the east. The length of operation for this facility is unknown. There is potential for a release from this facility.

According to the 1931 Sanborn FIM, a Cleaning facility was located approximately 120 feet to the southeast. The length of operation for this facility is unknown. There is a potential for a historic release from this facility.

Off-Site Historical RECs (HREC)

1. According to ODEQ records, the former Chiloquin Texaco, located west and approximately 45 feet away, indicate that four USTs were installed pre-1989 which predates UST registration. These tanks were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. The new tanks were subsequently removed in 2017. With the exception of benzene and ethylbenzene in two soil samples in the 2017 UST excavation, petroleum hydrocarbon concentrations in soil and groundwater did not exceed applicable ODEQ Risk Based Concentrations (RBCs). On July 22, 2019, ODEQ granted a No Further Action (NFA) determination letter for the Chiloquin Texaco site. Based on the issuance of an NFA, and given the assumed ground water flow direction away from the subject Site, this facility is considered a historical REC. See Section 5.1 for further details.

Based upon the RECs identified above, Cardno recommended soil and groundwater analysis be conducted throughout the Subject Property to determine the presence and/or extent of contamination. An excerpt of the Phase I ESA is included in **Appendix A**.

Asbestos-Containing Materials

An Asbestos containing materials (ACMs) survey was conducted during the Phase I ESA, and the following ACMs were identified throughout the interior of the building including:

- Interior white skim coat on plaster surfacing, totaling approximately 3,600 square feet (SF), located within the western most portions of the on-Site building.
- Interior white texture and joint compound on drywall, totaling approximately 1,000 SF, located within the western most portions of the on-Site building.
- Interior white caulk, totaling approximately 50 linear feet (LF), located on interior west wall windows.

Overall, given the state of the buildings, most of these materials were in good to fair condition. Therefore, the identified ACM has a low probability of disturbance during ordinary use. Prior to any renovation or demolition that may cause the ACM to become friable, the material should be removed or abated by a qualified asbestos abatement contractor.

During the inspection, suspect building materials were observed in the exterior building debris from the former attached north building (former Chiloquin Mercantile); however, this material was not sampled and was identified in the report as presumed asbestos containing materials (PACM).

Lead-Based Paint

During the Phase I ESA inspection Cardno conducted a Lead-based paint (LBP) survey. Samples collected during the inspection identified LBP on various painted surfaces throughout the interior and exterior of the building in various tenant spaces including:

- Red paint on exterior concrete masonry unit (CMU), totaling approximately 3,600 SF, located on the exterior east, south, and west walls.
- Tan/gray paint on interior ceiling, totaling approximately 1,200 SF, located on wood board ceiling on the southwest corner of the building.

Most of the identified painted surfaces were in poor condition, with peeling and deterioration noted. As the building is not considered to be a child-occupied facility, the identified LBP can be left intact unless disturbed during renovation or demolition.

The Asbestos and Lead-based Paint Survey report detailing the inspection and sampling results was issued on May 17, 2021, and provided as an attachment in **Appendix A**.

1.6 Limitations / Exceptions of Assessment

The conclusions and recommendations contained within this report are based on the data developed during this Phase II ESA investigation. This report was prepared for the Client and their assignee(s), and is intended solely for their use. This report is not intended for third-party use without the expressed written consent of the Client and Cardno. This assessment has been prepared in general accordance with accepted environmental methodologies referred to in *ASTM Standard 1903-19*, including limitations inherent in these methodologies.

No other warranty is expressed or implied.

1.7 Special Terms and Conditions (User Reliance)

No ESA can eliminate all uncertainty. Furthermore, any sample, either surface or subsurface, taken for chemical analysis may or may not be representative of a larger population. Professional judgment and interpretation are inherent in the process and uncertainty is inevitable. Additional assessment may be able to reduce the uncertainty. Even when Phase II ESA work is executed with an appropriate site-specific standard of care, certain conditions present especially difficult detection problems. Such conditions may include, but are not limited to, complex geological settings, the fate and transport characteristics of certain hazardous substances and petroleum products, the distribution of existing contamination, physical limitations imposed by the location of utilities and other man-made objects, and the limitations of assessment technologies.

Phase II ESAs do not generally require an exhaustive assessment of environmental conditions on a property. There is a point at which the cost of information obtained and the time required to obtain it outweigh the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. If hazardous substance or petroleum releases are confirmed on a parcel of property, the extent of further assessment is related to the degree of uncertainty that is acceptable to the user with respect to the real estate transaction. Measurements and sampling data only represent the site conditions at the time of data collection. Therefore, the usability of data collected as part of this Phase II ESA may have a finite lifetime depending on the application and use being made of the data. An environmental professional should evaluate whether the generated data are appropriate for any subsequent use beyond the original purpose for which it was collected.

This report is for the use and benefit of, and may be relied upon by the entity(s) identified in Section 1.1 of this report as the Client, as well as any of its affiliates and their respective successors and assigns, in connection with a commercial real estate transaction involving the property, and in accordance with the terms and conditions in place between Cardno and the Client for this project. Any third party agrees by accepting this report that any use or reliance on this report shall be limited by the exceptions and limitations in this report, and with the acknowledgment that actual site conditions may change with time, and that hidden conditions may exist at the property that were not discovered within the authorized scope of the assessment. Any use by or distribution of this report to third parties, without the express written consent of Cardno is at the sole risk and expense of such third party.

Cardno makes no other representation to any third party except that it has used the degree of care and skill ordinarily exercised by environmental consultants in the preparation of the report and in the

assembling of data and information related thereto. No other warranties are made to any third party, either expressed or implied.

2 Beneficial Land and Water Use

2.1 Locality of the Facility

As defined by ODEQ, the Locality of the Facility is "any point where a human or an ecological receptor contacts or is reasonably likely to come into contact with facility related hazardous substances." (ODEQ, 1998a) This definition takes into account the likelihood of contamination migrating over time onto adjacent or nearby properties.

The chemical data obtained from soil and groundwater samples collected from the Site are used to approximate the Locality of the Facility, which is estimated to include the subsurface soil, groundwater, and soil vapor at the Site as well as the groundwater on adjoining properties directly downgradient of the Site.

2.2 Land Use Determination

The land use determination was performed in accordance with the ODEQ Guidance for the Consideration of Land Use in Environmental Remedial Actions (ODEQ, 1998a). The current and possible future land uses and water uses at the Site determine the types of receptors (human and ecological) that could potentially come into contact with elevated concentrations of impacted environmental media (soil, groundwater, soil vapor).

The Site is zoned for commercial use (C) by Klamath County. All adjoining properties are similarly zoned as commercial by Klamath County.

Potential future occupants of the Site and Locality of the Facility may be commercial or residential depending on developer preference and appropriate land use categories. Potential current and future receptors in the Locality of the Facility include occupational and residential, as well as excavation and construction workers during potential remedial actions followed by land development and infrastructure construction. However, a residential occupancy of the Site is unlikely as the commercial zoning does not allow for residential occupancy under current zoning ordinances.

2.3 Groundwater Use

The beneficial water use determination was performed in accordance with ODEQ Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites (ODEQ, 1998b). A search of the Oregon Water Resources Department (OWRD) database and a driving reconnaissance of the area surrounding the Site did not identify any active drinking water supply wells on the Site or in the vicinity of the Site.

2.4 Surface Water

The nearest surface water body in proximity to the Site is the Williamson River, located approximately 0.15-mile to the west. A review of the US Fish and Wildlife Service's National Wetland Inventory and Site reconnaissance did not discover the presence of on-Site surface waters or wetlands.

2.5 Beneficial Water Use Determination

The municipal water system supplies the Site and surrounding area with drinking water; further, there are no wetlands or surface water bodies in the Locality of the Facility. Based on these findings, beneficial uses of groundwater within the presumed Locality of the Facility and unconfined aquifer are unlikely.

3 Phase II ESA Activities

3.1 Sampling Objectives

3.1.1 Conceptual Site Model and Sampling Plan

The conceptual site model (CSM) takes into consideration the potential distribution(s) of contaminants with respect to the property and anticipated fate and transport characteristics of contaminants in the setting being assessed. The sampling plan was designed to provide for the collection of environmental media samples at locations and depths where impacts are most likely to occur.

The sampling plan developed for this project was based upon information provided in Cardno's May 2021 Phase I ESA. Specifically, soil and groundwater borings were located to assess for potential adverse impacts to the Site from the former underground bulk storage and dispensing of petroleum products and hazardous substance impacts from former on-Site automotive repair and in-ground hydraulic lifts, as well as impacts from off-Site dry-cleaning and printing facilities. Sample analysis performed under the CSM included: Volatile Organic Compounds (VOCs) by EPA Method 8260D, Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270E, Resource Conservation Recovery Act (RCRA) 8 metals by EPA Methods 6010D and 7470A/7471B, Polychlorinated Biphenyls (PCBs) by EPA Method 8082A, Total Petroleum Hydrocarbons (TPH) as Gasoline Range Organics (GRO) by Method NWTPH-Gx, and Diesel Range Organics (DRO) and Residual Range Organics (RRO) by Method NWTPH-Dx. The locations of borings and temporary monitoring wells installed to address identified RECs are noted in **Figures 3 and 4**.

3.1.2 Chemical Testing Plan/QAQC

The chemical testing plan was designed to detect the contaminants suspected to be present in the samples collected. This testing plan included tests which provide quality assurance (QA) and techniques that provide quality control (QC) over the chemical analysis. A completed chain of custody record accompanied each sample shipment to the analytical laboratory. Chain of custody records provide written documentation regarding sample collection and handling, identify the persons involved in the chain of sample possession, and a written record of requested analytical parameters.

3.1.3 Deviations from Phase II ESA Work Plan

Unless otherwise stated in this section, the work was performed without deviation from the protocols and procedures outlined in the Phase II ESA Work Plan (Cardno, 2021c).

The following deviations were encountered during this work:

- Due to access limitations, proposed borings B-1, as listed in the Phase II ESA Work Plan, could not be advanced adjacent to potential on-Site underground storage tank (UST) due to ceiling clearance and was relocated to the exterior. Proposed borings B-2 and B-9 were relocated to the interior of the building in order to avoid subsurface utilities.
- GPR investigation of the second UST, potentially located along the east wall was not completed.
- Well locations and elevations were not surveyed as planned using a Global Positioning System device or conventional survey equipment; as such, a potentiometric surface map was not produced.
- Cardno collected two of the proposed four paint chip samples from the debris pile.

3.2 Field Investigation and Methods

3.2.1 Soil Boring Installations & Sampling Activities

Based on the results of the Phase I ESA, nine soil borings (B-1 through B-9) were installed using a trackmounted direct push technology (DPT) drill rig, as depicted on **Figure 3**. Per the Phase II ESA Work Plan and in accordance to Cardno's CSM, borings B-1 through B-5 were converted to temporary monitoring wells (TMW-1 through TMW-5). All boring and monitoring wells were advanced in strategic locations based on the RECs identified in connection with the Subject Property.

During advancement of the soil borings, DPT soil cores were logged for lithology and screened in-field with an Organic Vapor Analyzer (OVA) equipped with a Photoionization Detector (PID). On August 17, 2021, Cardno and a subcontracted drilling company, Steadfast Services Northwest, LLC (Steadfast), mobilized to the Subject Property to perform soil sampling and installation of temporary groundwater monitoring wells. These borings were advanced into groundwater using a track-mounted GeoProbe DPT drill rig. Soil boring logs are included in **Appendix B**.

A summary of each soil boring, including total depth, sampling depth, sample location and intended purpose is outlined below.

Boring B-1 was located along North 1st Avenue and west of the on-Site building. The purpose of the boring was to identify possible contaminant migration from the underground storage tank and automotive service operations on-Site. Boring B-1 was advanced on August 17, 2021, to a total depth of 15 feet below ground surface (bgs). No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from two to four feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Boring B-2 was located within the interior of the southeast corner of the on-Site building. The purpose of the boring was to identify possible contamination from the off-Site dry-cleaning and printing facilities. Boring B-2 was advanced on August 17, 2021, to a total depth of 10 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Boring B-3 was located north of the on-Site building and debris/rubble pile. The purpose of the boring was to identify possible contamination from off-Site dry-cleaning and printing facilities. Boring B-3 was advanced on August 17, 2021, to a total depth of 12 feet bgs. No odors or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Boring B-4 was located north of the on-Site building and west of the on-Site rubble pile. The purpose of the boring was to identify possible contaminant migration from the UST and automotive service operations from the former on-Site underground storage tank and automotive service operations. Boring B-4 was advanced on August 17, 2021, to a total depth of 15 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Boring B-5 was located in the center of the on-Site building adjacent to a hydraulic in-ground lift. The purpose of the boring was to identify possible contamination from former auto service operations and the hydraulic in-ground lift. Boring B-5 was advanced on August 17, 2021, to a total depth of 15 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, PCBs, DRO, RRO, and GRO.

Boring B-6 was located within the interior of the on-Site building adjacent to a hydraulic in-ground lift. The purpose of the boring was to identify possible contamination from former auto service operations and the hydraulic in-ground lift. Boring B-6 was advanced on August 17, 2021, to a total depth of 10 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, PCBs, DRO, RRO, and GRO. A duplicate soil sample was collected from zero to two feet bgs and analyzed for VOCs.

Boring B-7 was located within the interior of the on-Site building adjacent to a hydraulic in-ground lift. The purpose of the boring was to identify possible contamination from former auto service operations and the hydraulic in-ground lift. Boring B-7 was advanced on August 17, 2021, to a total depth of 10 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from zero to two feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, PCBs, DRO, RRO, and GRO.

Boring B-8 was located within the interior of the on-Site building and north of the potential UST identified during the GPR survey. The purpose of the boring was to identify possible contaminant migration from the on-Site UST and automotive service operations. Boring B-8 was advanced on August 17, 2021, to a total depth of 6 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from two to four feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Boring B-9 was located within the interior of the on-Site building near the northern wall. The purpose of the boring was to identify possible contaminant migration from a potential on-Site UST. Boring B-9 was advanced on August 17, 2021, to a total depth of 10 feet bgs. No elevated OVA readings, odors, or visual indications of contamination were noted in the soil column. A soil sample was collected from two to four feet bgs and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

A total of 10 soil samples, including a field duplicate sample, were collected for laboratory analysis. These samples were submitted to Pace Analytical Service, Inc. (Pace), in Mount Juliet, Tennessee, under Chain-of-Custody protocol. A soil analytical summary (detections only) is provided in **Table 1**. Laboratory analytical reports are included in **Appendix D**.

3.2.2 Temporary Monitoring Well Installation & Groundwater Sampling Activities

Five of the soil borings were extended into the water table and converted into temporary groundwater monitoring wells (TMW-1, TMW-2, TMW-3, TMW-4, and TMW-5) on August 17, 2021. Locations of the temporary monitoring wells are depicted on **Figure 4**.

Temporary, one-inch diameter, polyvinyl chloride (PVC) monitoring wells were installed in 10-foot sections after the borings were advanced into the water table. The well screens were 0.010-inch PVC and screen lengths for each well were 10 feet. Silica sand packs were installed to surface.

After their installation, the temporary monitoring wells were developed until at least five well volumes were removed or until the well was fully evacuated of groundwater. Suspended fines and foreign materials from the initial soil borings were purged during development with the goal of encouraging formation groundwater to enter the well screen. Non-aqueous phase liquid (NAPL) or free product was not observed in the temporary monitoring wells during the course of this investigation.

Prior to sampling, the wells were purged with a peristaltic pump until either a minimum of three well volumes were purged or until groundwater quality parameters stabilized. Groundwater quality parameters measured include pH, temperature, conductivity, and dissolved oxygen. These parameters were measured using a YSI ProSeries Professional Plus. Turbidity was measured utilizing a Hach 2100Q turbidity meter to verify that groundwater turbidity was less than 10 Nephelometric Turbidity Units (NTU). Cardno was unable to obtain <10 NTUs in all monitoring wells (TMW-1 through TMW-5); turbidity ranged from 692.34 NTUs in TMW-2 to 33.96 NTUs in TMW-4.

A summary of each installed groundwater well is as follows:

Temporary Monitoring Well TMW-1 was installed at the location of B-1 and over three well volumes were purged. After groundwater parameters stabilized, a groundwater sample was collected on August 18, 2021, and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Temporary Monitoring Well TMW-2 was installed at the location of B-2 and over three well volumes were purged. After groundwater parameters stabilized, a groundwater sample was collected on August 18, 2021, and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Temporary Monitoring Well TMW-3 was installed at the location of B-3 and over three well volumes were purged. After groundwater parameters stabilized, a groundwater sample was collected on August 18, 2021, and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO. A duplicate groundwater sample was collected and analyzed for VOCs.

Temporary Monitoring Well TMW-4 was installed at the location of B-4 and over three well volumes were purged. After groundwater parameters stabilized, a groundwater sample was collected on August 18, 2021, and analyzed for VOCs, SVOCs, RCRA 8 metals, DRO, RRO, and GRO.

Temporary Monitoring Well TMW-5 was installed at the location of B-5 and over three well volumes were purged. After groundwater parameters stabilized, a groundwater sample was collected on August 18, 2021, and analyzed for VOCs, SVOCs, RCRA 8 metals, PCBs, DRO, RRO, and GRO.

A total of six groundwater samples, including a field duplicate sample, were collected and submitted to Pace in Mount Juliet, Tennessee, under chain-of-custody protocol. A groundwater analytical summary (detections only) is provided in **Table 2**. Groundwater sampling logs can be found in **Appendix C**. Laboratory analytical reports are included in **Appendix D**. Following groundwater sampling activities, each of the temporary monitoring wells were decommissioned by a licensed driller.

3.2.3 Investigation Derived Waste

Investigation derived waste (IDW) generated during this investigation included all materials recovered during boring and monitoring well installation and sampling activities. IDW were containerized in a 55-gallon drum which was staged on the Subject Property. A total of one 55-gallon drum was labeled as non-hazardous waste with waste generator information provided. The 55-gallon drum will be disposed at a Subtitle D landfill in accordance with all appropriate regulations.

3.2.4 Ground Penetrating Radar

Based on Cardno's findings from the May 2021 Phase I ESA, the former Markwardt Brothers Garage building was used as an auto repair garage and gasoline filling station. Further, Cardno personnel identified potential UST vent pipes attached to the west interior wall in the vicinity of the area historically used as a gasoline filling station as well as a second vent pipe in the eastern area of the building which potentially serviced a heating oil tank.

On August 17, 2021, Cardno subcontracted GPR Data Inc. (GPR Data) to conduct a ground penetrating radar (GPR) study in the area identified in the 1931 Sanborn FIM and subsurface utility clearing of all boring/well locations. GPR field investigation began with the utilization of a Geophysical Survey Systems Inc. (GSSI) Utility Scan LT GPR system, configured with a 400-Megahertz (MHz) GPR antenna connected to a SIR3000. Upon completion, GPR Data identified one anomaly, appearing to represent patterns, data, and information comparable to a UST in the interior of the building. No other anomalies or evidence of additional USTs were noted. The approximate location of the UST is depicted in **Figure 5** and the GPR report is included in **Appendix E**.

3.2.5 Debris Characterization Analysis

Per the Phase II ESA Work Plan dated June 23, 2021, Cardno proposed to collect up to 10 bulk samples from the debris/rubble pile for laboratory analysis by polarized light microscopy (PLM) to determine

asbestos fiber content. Further, Cardno proposed the collection of up to four (4) paint chip samples to be collected from the debris/rubble pile and analyzed for lead by Toxicity Characteristic Leaching Procedure (TCLP).

During Cardno's Phase II ESA activities, Cardno's Ashton Smithwick, a licensed and accredited asbestos inspector, collected six (6) bulk samples from the debris/rubble pile and submitted these samples to Eurofins EMLab P&K (EMLab) in Norcross Georgia. EMLab analyzed all samples using Polarized Light Microscopy (PLM) via EPA Method 600/R-93/116. This laboratory is accredited by the National Institute of Standards of Technology (NIST), and is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP). EMLab participates as a nationally recognized laboratory accreditation program for asbestos testing, as required by ODEQ regulation OAR 430-248-0270(3)(c). A bulk sample analysis summary is provided in **Table 3**. A copy of the analytical results including the laboratory certification is included in **Appendix D**.

Further, Mr. Smithwick, an EPA-trained lead-based paint (LBP) inspector, collected two samples from the debris/rubble pile to be analyzed for lead by Toxicity Characteristic Leaching Procedure (TCLP). These samples were submitted to Pace in Mount Juliet, Tennessee, under chain-of-custody protocol. A TCLP analysis summary is provided in **Table 4.** A copy of the analytical results including the laboratory certification is included in **Appendix D**.

4 Environmental Assessment Results

4.1 Site Geology

Based on the soil boring log data, soil underlying the Site predominantly consists of unconsolidated sand and silt deposits to the deepest terminal boring depth of 15 feet below ground surface (bgs). Generally, these deposits were represented by sandy silt, with less common observances of gravel and clay. Soil was consistently observed to be brown with the exception of the sand observed from 13.5-15 feet bgs in boring B-5 which was observed to be gray.

4.2 Site Groundwater

Groundwater was encountered in soil borings B-1 through B-5 between 5 and 8 feet bgs. Static groundwater on August 18, 2021, was observed between 9.59 and 10.62 feet below top of temporary well casings, which approximately corresponded to ground surface elevations. A summary of shallow water table data collected on August 18, 2021, is provided on **Table 5**.

4.3 Analytical Data Results

4.3.1 <u>Soil</u>

A comparison of the laboratory analytical results to the ODEQ RBCs (ODEQ, 2018) for sample results above laboratory reporting limits is presented in **Table 1**.

Select VOC (**1,2,4-trimethybenzene** and **xylenes (total**), RCRA 8 metal (**barium**, **chromium**, **lead**, and **mercury**), DRO, and RRO concentrations were present above laboratory reporting limits. A discussion of soil analytical results and exceedances of applicable RBCs is included in Section 5.

SVOCs, PCBs, and GRO concentrations were not present above laboratory reporting limits in soil samples analyzed from the Site.

4.3.2 <u>Groundwater</u>

A comparison of the laboratory analytical results to the RBCs for sample results above laboratory reporting limits is presented in **Table 2**.

With the exception of **GRO**, **barium**, **chromium**, and **lead**, analyzed constituents were not present in groundwater above laboratory reporting limits. A discussion of groundwater analytical results and exceedances of applicable RBCs is included in Section 5.

VOCs, SVOCs, DRO, and RRO concentrations were not reported above laboratory reporting limits in groundwater samples analyzed from the Site.

4.3.3 Quality Assurance and Quality Control Methods

Samples were labeled with a distinct sample identification number, the sampler's initials, and the date of the collection. Each sample container was sealed, labeled, placed on ice in a cooler, and shipped to Pace within the sample hold times. A completed chain-of-custody form was initiated in the field and accompanied the samples when submitted to the laboratory for analyses.

Copies of the chain-of-custody forms are shown in the laboratory analytical reports included as **Appendix D**.

4.3.4 Debris Characterization Analysis

Based on the analytical results of suspect ACM samples collected from the debris pile for the purpose of debris characterization, the following materials were identified as asbestos-containing:

- White texture with paint on drywall
- White joint compound on drywall

The drywall identified throughout the debris/rubble pile appeared to be in poor condition and is considered a friable material. The laboratory report is included as **Appendix D** with results summarized in **Table 3**. Additionally, samples collected from the debris/rubble pile and analyzed for TCLP indicated lead was below laboratory method detection limits. The laboratory report is included as **Appendix D** with results summarized in **Table 4**.

5 Conceptual Site Model

The conceptual site model (CSM) takes into consideration the potential distribution(s) of contaminants with respect to the property and anticipated fate and transport characteristics of contaminants in the setting being assessed. The CSM further summarizes the receptors (human and ecological) and potential exposure pathways to regulated contaminants discovered in the Site subsurface (soil, groundwater, and soil vapor). Human exposure to contaminants on the Subject Property is evaluated according to the type and extent of exposure expected based on the Site's current and reasonable future use. ODEQ publishes RBCs for commonly discovered contaminants (ODEQ, 2018). The RBCs are calculated for varying exposure pathways and scenarios, and are conservative estimates of protective levels of contaminant concentrations in soil, groundwater, and air.

5.1 Sources

The sources of contaminant concentrations on the Subject Property include the potential for a release of petroleum products to the soil and groundwater from historical on-site automotive repair and operation of an UST system used to dispense fuels.

5.2 Potential Exposure Pathways and Receptors

Current and likely future land uses according to zoning regulations or known redevelopment plans were used to develop a model describing potential exposure pathways on the Subject Property. The Subject Property is currently an unoccupied building originally constructed as an automotive repair and gasoline filling station facility, zoned for commercial use, located in an area with a mix of residential and occupational uses on adjoining and nearby properties. According to Klamath County zoning ordinance, the Site's commercial zoning class allows for the following uses:

- Retail trade establishments such as food stores, drug stores, hardware stores, furniture stores, appliance sales, equipment sales, automobile sales, or clothing sales;
- Business, governmental or professional office;
- Service commercial establishment such as motel, gasoline service station or restaurant;
- Financial institution;
- Personal and business service such as barber shop, tailoring shop, printing shop, laundry or dry cleaning establishment;
- Commercial amusement such as a bowling alley or theater;
- Similar uses as authorized by the city council;

Therefore, potential human receptors on the Site and on nearby/off-Site properties could include residential, occupational, construction workers, and excavation workers.

The exposure pathways for the Site and a determination if said pathways are considered complete are summarized in the following table:

Pathway	Potential Receptor	Complete Pathway?	Basis for selection/exclusion
		SOIL	
Ingestion, dermal contact, and inhalation	Residential	No	There are no contaminant concentrations exceeding residential ingestion/dermal contact/inhalation RBCs.

Pathway	Potential Receptor	Complete Pathway?	Basis for selection/exclusion			
	Occupational	No	There are no contaminant concentrations exceeding occupational ingestion/dermal contact/inhalation RBCs.			
	Construction worker	No	There are no contaminant concentrations exceeding construction worker ingestion/dermal contact/inhalation RBCs.			
	Excavation worker	No	There are no contaminant concentrations exceeding excavation worker ingestion/dermal contact/inhalation RBCs.			
Vapor intrusion into buildings and outdoor	Residential	No	There are no contaminant concentrations exceeding			
air	Occupational	No	residential or occupational vapor intrusion RBCs.			
Leaching to groundwater	Residential	No	Lead was detected above the residential and occupational leaching to groundwater RBC. However, the leaching to groundwater pathway is			
	Occupational	No	incomplete on the Subject Property and Locality of the Facility based on empirical groundwater data collected from the Site, and the availability of municipal drinking water to the Site and surrounding area.			
	GR	OUNDWATER				
Ingestion and inhalationfrom tap water	Residential	No	The groundwater pathway is incomplete at the Subject Property and in the Locality of the Facility			
	Occupational	No	due to the availability of municipal drinking water to the Site and surrounding area.			
Vapor intrusion into buildings and outdoor	Residential	No	There are no contaminant concentrations exceeding			
air	Occupational	No	residential or occupational vapor intrusion RBCs.			
Groundwater in excavation	Construction and excavation worker	No	There are no contaminant concentrations exceeding occupational groundwater in excavation RBCs.			

Note: Yes = Pathway is complete; No = Pathway is incomplete; Potential = Pathway may be potentially complete in the future

5.3 Risk-Based Screening of Laboratory Analytical Data

In order to evaluate the risk posed to human health and the environment, the soil and groundwater analytical data collected during this assessment was compared to the generic RBCs developed by ODEQ.

5.3.1 <u>Soil</u>

5.3.1.1 Direct Contact (Ingestion, Dermal Contact, and Inhalation)

VOC, **GRO**, **DRO**, **RRO**, and **RCRA 8 metal** constituents with reported concentrations above laboratory method detection limits do not exceed direct contact RBCs in soil samples collected from the Site.

5.3.1.2 Vapor Intrusion into Buildings and Volatilization into Outdoor Air

Concentrations of **VOC**s in soil samples do not exceed vapor intrusion into buildings or volatilization into outdoor air RBCs.

5.3.1.3 Leaching to Groundwater

Lead concentrations in the soil samples collected from B-2, B-3, B-6, and B-7 exceed the leaching to groundwater RBC of 30 milligrams per kilogram; however, lead was not reported above laboratory reporting limits in groundwater samples collected from the Site, with the exception of TMW-3 where lead was reported at 26.7 μ g/L. The leaching to groundwater pathway is incomplete on the Subject Property and Locality of the Facility based on the empirical groundwater data from the Site and the availability of municipal drinking water to the Subject Property and surrounding area.

5.3.2 Groundwater

5.3.2.1 Direct Contact (Ingestion and Inhalation)

Concentrations of analyzed constituents do not exceed direct contact RBCs.

5.3.2.2 Vapor Intrusion into Buildings and Volatilization into Outdoor Air

Concentrations of analyzed constituents do not exceed volatilization to outdoor air or vapor intrusion into buildings RBCs.

5.3.2.3 Groundwater in Excavation

Concentrations of analyzed constituents do not exceed groundwater in excavation RBCs.

6 Discussion of Findings

6.1 Recognized Environmental Conditions

Based on the results of this assessment, the recognized environmental conditions and non-scope considerations discussed in the previous Phase I ESA appear to have been evaluated. No additional RECs were encountered during this investigation.

6.2 Affected Media

6.2.1 <u>Soil Impacts</u>

Lead concentrations reported in soil samples B-2, B-3, B-6, and B-7 exceed the residential and occupational leaching to groundwater RBC; however, no lead concentrations were reported above laboratory reporting limits with the exception of TMW-3 at 26.7 μ g/L. Therefore, the general absence of lead in groundwater samples collected from the Site and the availability of municipal drinking water to the surrounding area mitigates the risk of lead leaching to groundwater.

6.2.2 Groundwater Impacts and Shallow Depth to Groundwater

Groundwater samples did not contain concentrations of analyzed constituents exceeding applicable residential and occupational RBCs.

Groundwater was observed across the Site at approximately 10 feet bgs.

6.2.3 <u>Debris Characterization</u>

White texture with paint and white joint compound were identified as asbestos-containing and the drywall on which they were found is considered a friable material. Painted building materials from the debris pile were collected and analyzed for lead using the TCLP. TCLP results were below laboratory reporting limits. The debris/rubble pile equates to approximately 200 cubic yards, and should be disposed of as regulated asbestos waste in accordance with federal, state, and local guidelines.

6.3 Vapor Intrusion Screening

Based on groundwater analytical results, the potential for vapor intrusion and/or encroachment is not a concern for the Subject Property's current or future developed status.

7 Phase II ESA Conclusions & Recommendations

Cardno has completed a Phase II ESA for the former Markwardt Brothers Garage property, located northeast of the North 1st Avenue and West Chocktoot Street intersection, in Chiloquin, Oregon. The Phase II ESA was conducted to determine if the RECs identified by Cardno in the May 2021 Phase I ESA have impacted soil, groundwater, or vapor conditions at the Site. In order to address these RECs, a series of soil borings and temporary monitoring wells were installed in pre-determined locations. Soil and/or groundwater samples were submitted for laboratory analysis from each of the borings.

The soil and groundwater samples were selectively analyzed for VOCs, SVOCs, RCRA 8 metals, PCBs, GRO, DRO, and RRO. With the exception of lead in soil samples collected from borings B-2, B-3, B-6, and B-7, analyzed constituents were not present at concentrations exceeding their respective RBCs. Based on the aforementioned results of this Phase II ESA and the Beneficial Land and Water Use completed in association with this, Cardno did not discover a complete exposure pathway with respect to hazardous substance or petroleum product impacts to soil or groundwater.

Due to the potential for on-Site UST(s), lifts, and oil-change pit to contain remnant petroleum products, Cardno recommends the following actions to both facilitate redevelopment/reuse efforts on the Site and to protect future construction or excavation workers if these features are inadvertently encountered, or for future Site occupants in the event they result in a future release to the Site subsurface:

- Based on the GPR report provided by GPR Data, the area of the potential UST anomaly should be further investigated. If a UST is discovered, said UST should be decommissioned and reported in accordance with ODEQ guidelines;
- The potential for an additional heating oil UST in the Subject Property's east area (building interior east wall) should be further evaluated by installing a test pit/exploratory excavation, and if confirmed, the UST should be decommissioned in accordance with ODEQ guidelines;
- The in-ground hydraulic lifts and oil-change pit should be decommissioned by removal;
- Any concrete or soil removed from the Site should be characterized and directed to an appropriately permitted landfill for disposal;
- The debris/rubble pile should be characterized as regulated asbestos waste, and should be removed from the Site by a qualified asbestos abatement contractor in compliance with federal, state, and local regulations.

8 Qualifications/Signatures of Environmental Professional(s)

Prepared by:

I declare that I meet the definition of Environmental Professional as defined in 40 CFR Part 312.10 and that I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I further certify that in my professional judgment, this report meets the general requirements of *ASTM Method E1903-19, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

for Cardno

W. Ashton Smithwick Geologist I Date: November 2021

QA/QC by:

I declare that I meet the definition of Environmental Professional as defined in 40 CFR Part 312.10 and that I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I further certify that in my professional judgment, this report meets the general requirements of *ASTM Method E1903-19, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

for Cardno

for Cardno

Keith Ziopron, PE Senior Principal

Date: November 2021

Keri L. Chappell, R.G. Project Geologist

Date: November 2021

9 References

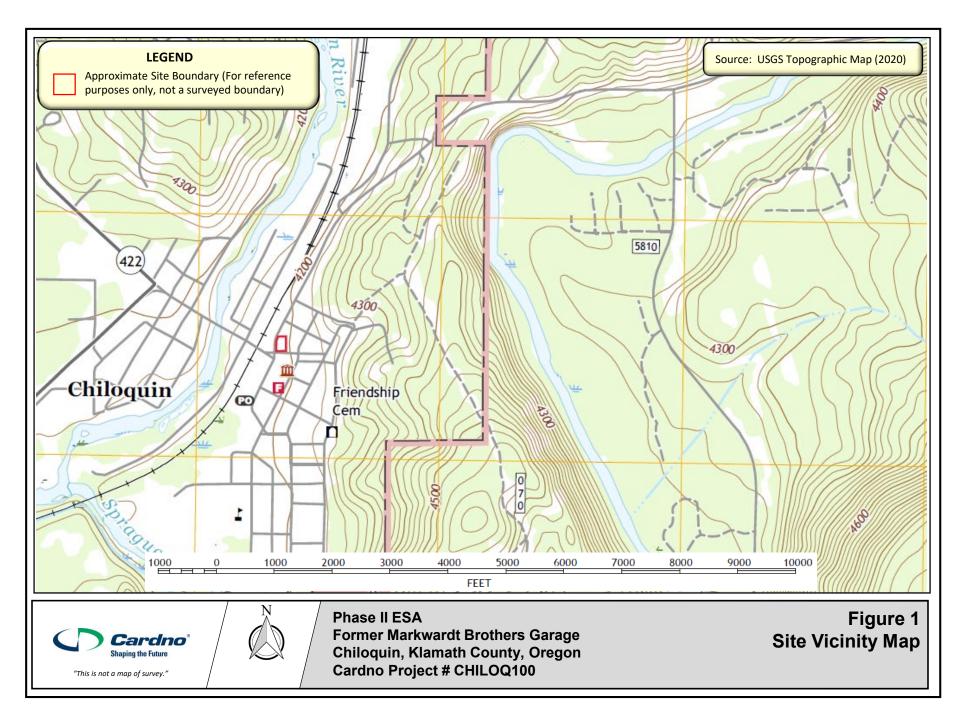
ASTM International. 2013. ASTM Standard E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

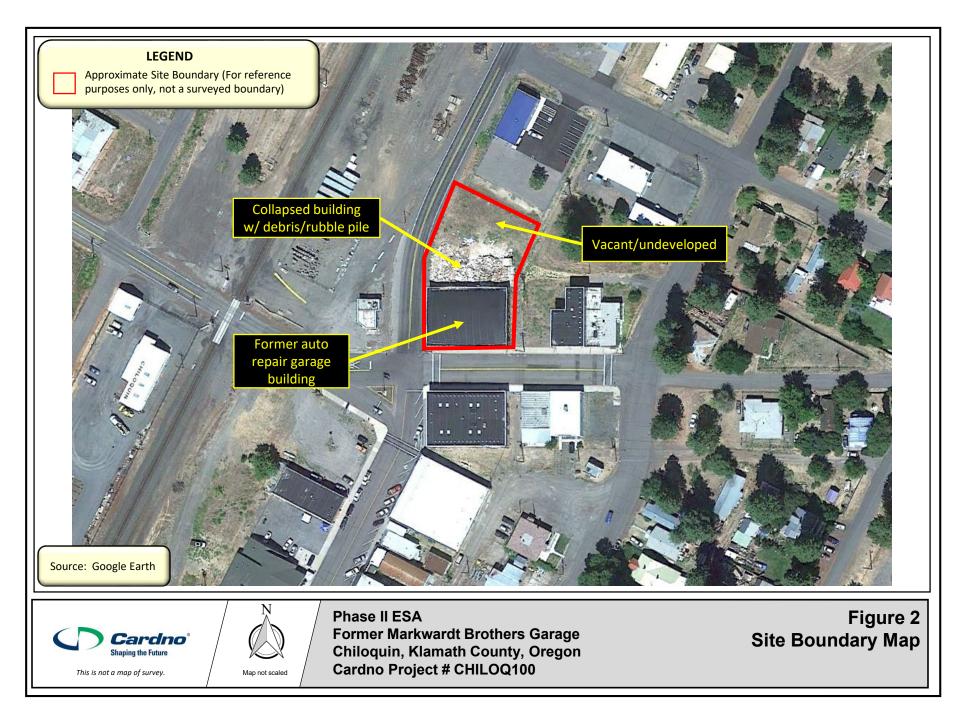
ASTM International. 2019. ASTM Method E1903-19, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

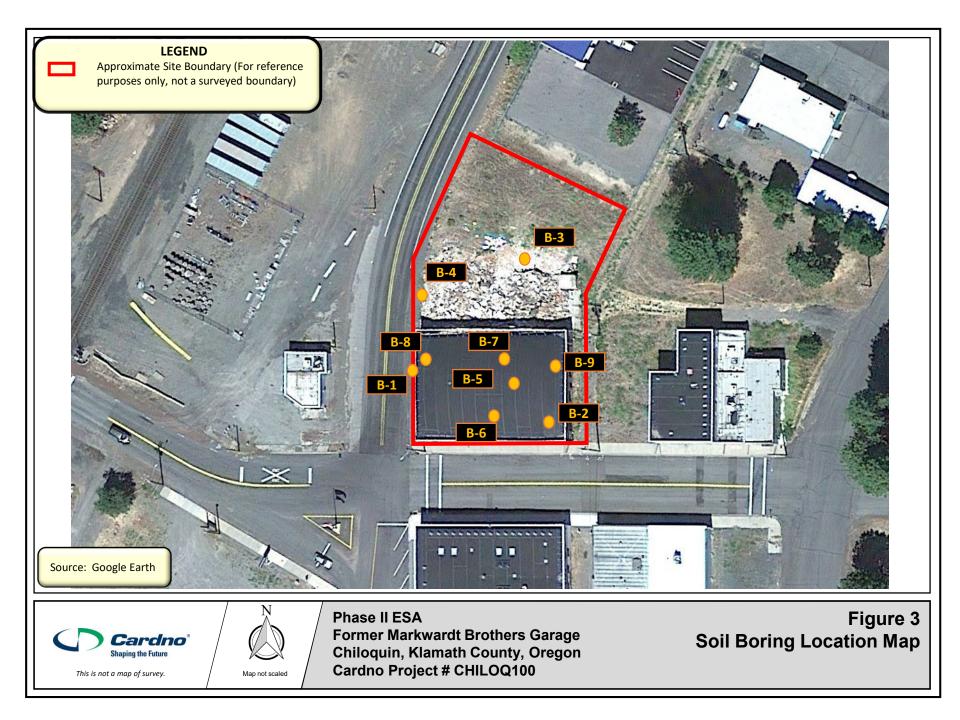
Cardno. May 17, 2021a. Asbestos & Lead-Based Paint Survey, Former Markwardt Brothers Garage, North 1st Avenue and West Chocktoot Street, Chiloquin, Klamath County, Oregon.

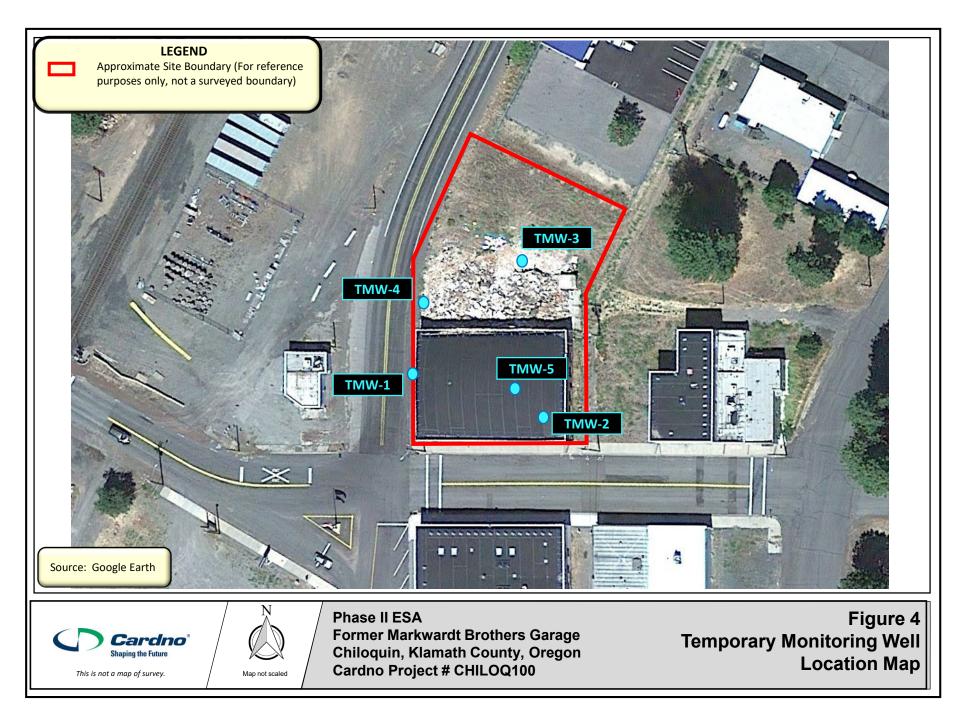
Cardno. May 17, 2021b. Phase I Environmental Site Assessment, Former Markwardt Brothers Garage, Chiloquin, Klamath County, Oregon.

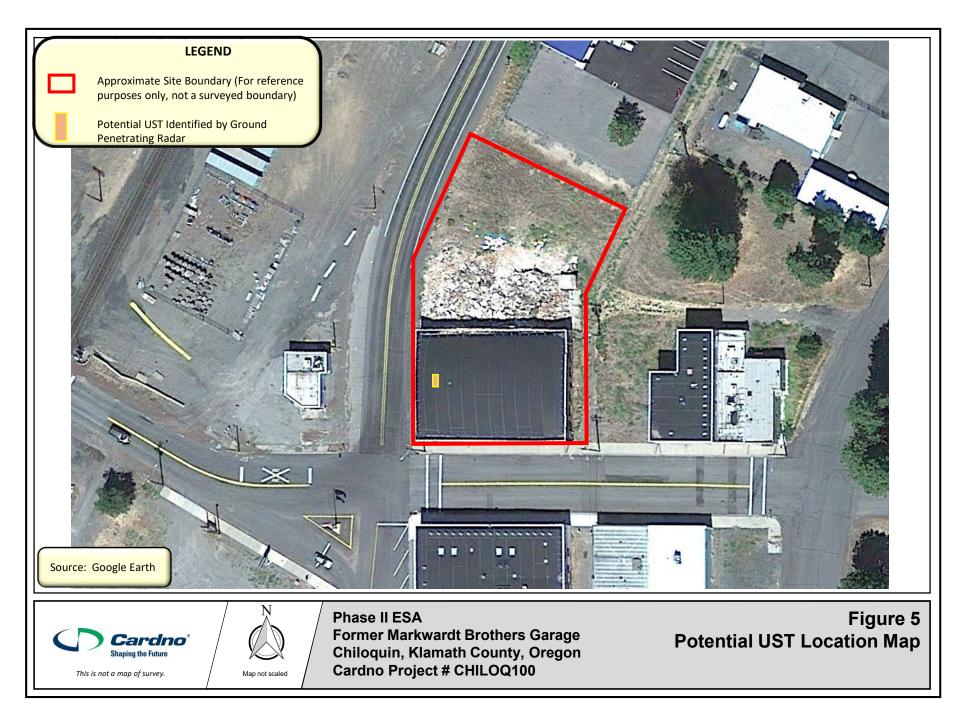
Cardno. June 23, 2021c. *Phase II Environmental Site Assessment Work Plan, Former Markwardt Brothers Garage, North 1st Avenue and West Chocktoot Street, Chiloquin, Oregon.*


Oregon Department of Environmental Quality (ODEQ). July 1, 1998a. *Guidance for Consideration of Land Use in Environmental Remedial Actions*. (October 2017 update to contact information and website links).


Oregon Department of Environmental Quality (ODEQ). July 1, 1998b. *Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites*. (October 2017 update to contact information and website links).


Oregon Department of Environmental Quality, Environmental Cleanup Program (ODEQ). May 2018. *Risk-Based Concentrations for Individual Chemicals*


FORMER MARKWARDT BROTHERS GARAGE


FIGURES

FORMER MARKWARDT BROTHERS GARAGE

TABLES

TABLE 1: SOIL ANALYTICAL SUMMARY

FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, KLAMATH COUNTY, OREGON

											Sample Identification									
		Soil Boring										B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-6 DUP
		Sample Depth (feet bgs)											0-2	0-2	0-2	0-2	0-2	2-4	2-4	0-2
										Sample Date	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021	08.17.2021
	Residential Receptor Scenario			Occup	Occupational Receptor Scenario			Construction Worker Receptor Scenario	Excavation Worker Receptor Scenario		Results presented in mg/kg or parts per million (DETECTIONS ONLY)									
RCRA Metals	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCss										
Barium	15,000	NV	NV	*	220,000	NV	NV	*	69,000	>Max	198	182	183	167	202	156	199	170	195	NA
Chromium	120,000	NV	NV	*	>Max	NV	NV	*	530,000	>Max	26.8	18.0	13.9	16.9	24.0	15.8	14.1	18.7	17.4	NA
Lead	400	NV	NV	30	800	NV	NV	30	800	800	1.85	119	54.1	4.35	2.11	36.8	58.9	1.20	14.0	NA
Mercury	23	NV	NV	*	350	NV	NV	*	110	2,900	<0.0569	<0.0558	0.0536	<0.0547	<0.0587	<0.0537	<0.0544	<0.0548	<0.0537	NA
NWTPH-Dx	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCss			Result	s presented i	n mg/kg or pa	arts per millic	on (DETECTIO	NS ONLY)		
Diesel Range Organics (C12 - C24)	1,100	>Max	>Max	9,500	14,000	>Max	>Max	>Max	4,600	>Max	<5.69	13.0	<5.05	<5.47	<5.87	111	<5.44	<5.48	<5.37	NA
Residual Range Organics (>C24)	2,800	>Max	>Max	>Max	36,000	>Max	>Max	>Max	11,000	>Max	<14.2	75.1	17.6	<13.7	<14.7	564	<13.6	<13.7	<13.4	NA
VOCs	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCso	RBCsi	RBCsw	RBCss	RBCss			Result	s presented i	n mg/kg or pa	arts per millic	on (DETECTIO	NS ONLY)		
1,2,4-Trimethylbenzene	430	>Csat	140	10	6,900	>Csat	>Csat	48	2,900	81,000	<0.0134	<0.0143	0.0176	<0.0130	<0.0186	<0.0169	<0.0169	<0.0149	<0.0163	<0.0164
Xylenes (total)	1400	>Csat	160	23	25,000	>Csat	>Csat	100	20,000	560,000	<0.0174	<0.0186	0.0581	<0.0170	<0.0242	<0.0218	<0.0219	<0.0194	<0.0211	<0.0214
SVOCs		No SVOC constituents reported above laboratory method detection limits							BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA		
NWTPH-Gx		NWTPH-Gx not reported above laboratory method detection limits								BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
PCBs		No PCB constituents reported above laboratory method detection limits									NA	NA	NA	NA	BRL	BRL	BRL	NA	NA	NA

RBC = Risk-Based Concentration screening value

RBCss = Soil Ingestion, Dermal Contact, and Inhalation / RBCso = Volatilization to Outdoor Air / RBCsi = Vapor Intrusion into Buildings / RBCsw = Leaching to Groundwater

Concentrations in **bold** exceed ODEQ residential and/or occupational RBC(s)

VOC = Volatile Organic Compound

SVOC = Semi-Volatile Organic Compound

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons - Gasoline

NWTPH-Dx = Northwest Total Petroleum Hydrocarbons - Diesel

PCBs = Polychlorinated Biphenyls

RCRA = Resource Conservation Recovery Act

mg/kg = milligrams per kilogram

B = Soil Boring

bgs = below ground surface

BRL = Below Reporting Limits

NA = Not Analyzed

NV = Non-Volatile chemical (no RBC for volatilization pathway)

>Max = The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg or 1,000,000 mg/L. Therefore, this substance is deemed not to pose risks in this scenario.

>Csat = The soil RBC exceeds the limit of three-phase equilibrium partitioning. Soil concentrations in excess of Csat indicate that free product might be present.

* = Leaching-to-Groundwater RBCs are not provided in ODEQ RBC generic tables for inorganic chemicals. This pathway is not of concern, and site-specific leaching tests are not recommended.

TABLE 2: GROUNDWATER ANALYTICAL SUMMARY

FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, KLAMATH COUNTY, OREGON

							Sample Ide	entification				
		Tempo	TMW-1	TMW-2	TMW-3	TMW-4	TMW-5	TMW-3 DUP				
					Sample Date	08.18.2021	08.18.2021	08.18.2021	08.18.2021			
		Residential Receptor Occupation Scenario Receptor Sc			Construction & Excavation Worker Receptor Scenario	R	esults presente	d in µg/L or part	s per billion (DE		Y)	
RCRA Metals	RBCwo	RBCwi	RBCwo	RBCwi	RBCwe							
Barium	Barium NV NV		NV	NV	>S	25.6	60.9	38.3	9.10	91.9	NA	
Chromium	NV	NV	NV	NV	9,400	< 10.0	11.8	< 10.0	< 10.0	14.0	NA	
Lead	NV	NV	NV	NV	>S	< 6.0	< 6.0	26.7	< 6.0	< 6.0	NA	
NWTPH-Gx	RBCwo	RBCwi	RBCwo	RBCwi	RBCwe	Results presented in μ g/L or parts per billion (DETECTIONS ONLY)						
Gasoline Range Organics (C7 - >C12)	>S	22,000	>S	>S	14,000	159 B	115 B	< 100	< 100	< 100	NA	
VOCs	No VOC c	onstituents		oove labora nits	tory method detection	BRL	BRL	BRL	BRL	BRL	BRL	
NWTPH-Dx	No NWT	PH-Dx cons	•	oorted abov on limits	e laboratory method	BRL	BRL	BRL	BRL	BRL	NA	
PCBs	No PCB c	No PCB constituents reported above laboratory method detection limits					NA	NA	NA	BRL	NA	
SVOCs	No SVOC o	constituents	-	bove labora nits	atory method detection	BRL	BRL	BRL	BRL	BRL	NA	

RBC = Risk-Based Concentration screening value

RBCwo = Volatilization to Outdoor Air / RBCwi = Vapor Intrusion into Buildings / RBCwe = Occupational Contact with Groundwater in Excavation

Concentrations in **bold** exceed ODEQ residential and/or occupational RBC(s)

VOC = Volatile Organic Compound

SVOC = Semi-Volatile Organic Compound

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons - Gasoline

NWTPH-Dx = Northwest Total Petroleum Hydrocarbons - Diesel

PCBs = Polychlorinated Biphenyls

RCRA = Resource Conservation Recovery Act

µg/L = micrograms per liter

TMW = Temporary Monitoring Well

bgs = below ground surface

BRL = Below Reporting Limits

NA = Not Analyzed

NV = Non-Volatile chemical (no RBC for volatilization pathway)

B = Analyte present in associated method blank

>S = The constituent RBC for this pathway is calculated as greater than constituent solubility in groundwater (i.e. present in subsurface as undissolved or "free product"/"Non-Aqueous Phase Liquid")

TABLE 3: SUMMARY OF BULK SAMPLE ANALYSIS

FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, KLAMATH COUNTY, OREGON

HA ID	Date	HA Description	Material Location	Percent and Type of Asbestos Detected ¹	Estimated Quantity	Type of ACM ²	Friability ³	Physical Condition
RP-01-01	8/18/21	Shingles	Rubble pile (east)	NAD	N/A	N/A	NF	Poor
RP-01-02	8/18/21	Shingles	Rubble pile (north)	NAD	N/A	N/A	NF	Poor
RP-02-01a	8/18/21	Drywall (White texture w/ paint)	Rubble pile (west)	2% CH		Misc. Cat 1	F	Poor
RP-02-01b	8/18/21	Drywall (Cream tape)	Rubble pile (west)	NAD	N/A	N/A	F	Poor
RP-02-01c	8/18/21	Drywall (White joint compound)	Rubble pile (west)	2% CH		Misc. Cat 1	F	Poor
RP-02-01d	8/18/21	Drywall (White drywall w/ brown paper)	Rubble pile (west)	NAD	N/A	N/A	F	Poor
RP-02-02a	8/18/21	Drywall (Cream tape)	Rubble pile (north)	NAD	N/A	N/A	NF	Poor
RP-02-02b	8/18/21	Drywall (White joint compound)	Rubble pile (north)	2% CH		Misc. Cat 1	F	Poor
RP-02-02c	8/18/21	Drywall (White drywall w/ brown paper)	Rubble pile (north)	NAD	N/A	N/A	NF	Poor
RP-03-01	8/18/21	Gray caulk	Rubble pile (west)	NAD	N/A	N/A	NF	Poor
RP-03-02	8/18/21	Gray caulk	Rubble pile (east)	NAD	N/A	N/A	NF	Poor

Notes:

NM - not measured

n/a - not applicable

(1) CH = Chrysotile; AM = Amosite; CR = Crocidolite; AN = Anthophyllite; AC = Actinolite; NAD = No Asbestos Detected

(2) Misc = Miscellaneous; TSI = Thermal System Insulation; SM= Surfacing Material

(3) F = Friable; NF - Non friable. For ACMs only: I = Non-Friable Category I; II = Non-Friable Category II

LF = linear feet PACM = Presumed Asbestos-Containing Materials

SF = square feet CY = Cubic Yards

Samples in **Bold** and yellow highlight contain asbestos above the regulatory threshold of 1%

TABLE 4: SUMMARY OF TOXICITY CHARACTERISTIC LEACHING PROCEDURE

FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, KLAMATH COUNTY, OREGON

Sample ID	Date	Location	Result (Lead)	Estimated Quantity	Physical Condition
RP-01	8/18/21	Rubble pile (east)	BRL	N/A	Deteriorated
RP-02	8/18/21	Rubble pile (west)	BRL	N/A	Deteriorated

Notes:

NM = not measured

BRL = Below Laboratory Reporting Limit

N/A = not applicable

TABLE 5: GROUNDWATER DEPTH SUMMARY

FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, KLAMATH COUNTY, OREGON

Well Number	Measurement Date	Depth of Well (ft btc)	Depth to Water (ft btc)
TMW-1	8/18/2021	13.00	10.51
TMW-2	8/18/2021	14.47	10.11
TMW-3	8/18/2021	11.43	9.59
TMW-4	8/18/2021	14.80	10.62
TMW-5	8/18/2021	13.28	10.08

ft btc = Feet Below Top of Casing

FORMER MARKWARDT BROTHERS GARAGE

APPENDIX

PREVIOUS ENVIRONMENTAL REPORT(S) EXCERPTS Phase I Environmental Site Assessment Report

Former Markwardt Brothers Garage Chiloquin, Klamath County, Oregon

May 17, 2021

Prepared for: City of Chiloquin, Oregon

Phase I Environmental Site Assessment Report

Prepared for: City of Chiloquin, Oregon
Project Name: Phase I Environmental Site Assessment
Former Markwardt Brothers Garage
Chiloquin, Klamath County, Oregon

Cardno Project #: CHILOQ100

Date: May 17, 2021

Table of Contents

1	Executive Summary							
	1.1	Findings and Conclusions	2					
2	Introc	duction	5					
	2.1	Purpose						
	2.2	Detailed Scope of Services	5					
	2.3	Significant Assumptions	5					
	2.4	Limitations, Exceptions, Deviations and/or Data Gaps	6					
	2.5	Special Terms and Conditions (User Reliance)	8					
3	Site D	Description	9					
	3.1	Location and Legal Description	9					
	3.2	Surrounding Area General Characteristics	9					
	3.3	Current Use of the Property	9					
	3.4	Current Uses of Adjoining Properties	10					
4	User	Provided Information	11					
	4.1	Title Records	11					
	4.2	Environmental Liens or Activity and Use Limitations (AULs)						
	4.3	Specialized Knowledge						
	4.4	Valuation Reduction for Environmental Issues						
	4.5	Owner, Property Manager, and Occupant Information	11					
	4.6	Reason for Performing Phase I	11					
5	Records Review							
	5.1	Standard Environmental Record Sources	12					
	5.3	Historical Records Sources	18					
		5.3.1 Aerial Photographs, Topographic Maps, and Sanborn FIMs	18					
		5.3.2 City Directories	20					
		5.3.3 Prior Reports	21					
6	Site R	Reconnaissance	22					
	6.1	Methodology and Limiting Conditions	22					
	6.2	Hazardous Substance Use, Storage, and Disposal	22					
	6.3	Underground Storage Tanks (USTs)						
	6.4	Aboveground Storage Tanks (ASTs)	22					
	6.5	Other Petroleum Products	22					
	6.6	Polychlorinated Biphenyls (PCBs)	22					
	6.7	Unidentified Substance Containers	22					
	6.8	Nonhazardous Solid Waste						
	6.9	Wastewater	23					
	6.10	Waste Pits, Ponds and Lagoons	23					
	6.11	Drains and Sumps	23					
	6.12	Septic Systems	23					

	6.13	Storm Water Management System	23
	6.14	Wells	23
7	Subs	urface Vapor Migration	24
8	Interv	views	25
9	Addit	ional Scope Items	26
	9.1	Asbestos Containing Materials	26
	9.2	Lead-Based Paint	27
		9.2.1 Lead-based Paint Results	27
	9.3	Additional Non-ASTM Considerations	28
10	Findir	ngs and Recommendations	29
	10.1	Findings	29
	10.2	Recommendations	31
11	Refer	ences	32
12	Quali	fications/Signatures of Environmental Professional(s)	33

Figures

Figure 1	USGS/Site Vicinity Map
----------	------------------------

- Figure 2 Site Boundary Map
- Figure 3 Tax Map
- Figure 4 Surrounding Land Use Map
- Figure 5 1931 Sanborn FIM Map
- Figure 6 REC Location Map

Appendices

- Appendix A Photographic Log
- Appendix B Interview Questionnaires
- Appendix C EDR Radius Map Report
- Appendix D EDR Historical Aerials Package
- Appendix E EDR Historical Topo Map Report
- Appendix F EDR Sanborn Fire Insurance Maps
- Appendix G EDR City Directories
- Appendix H Asbestos and Lead-Based Paint Survey, May 17, 2021, Cardno, Inc.

1 Executive Summary

Cardno has completed a Phase I Environmental Site Assessment (ESA) of the Former Markwardt Brothers Garage property located in Chiloquin, Klamath County, Oregon (**Figure 1**). The Subject Property is currently developed with a single-story commercial building totaling approximately 8,500 square feet (sq. ft.) of concrete block and brick construction, some of which is coated with plaster/stucco.

According to the City of Chiloquin Public Works Department, the remaining on-site building was utilized as an auto repair/car dealership facility from approximately the 1930s – 1960s; second-hand store in the 1970s; and Juniper wood products facility in the 1980s. Until recently the area of the site to the north of the on-site building was occupied by a commercial building that recently collapsed with the exception of a vault that still remains. All that remains is a pile of rubble. This building was formerly occupied by the Chiloquin Mercantile. The area to the north of the rubble pile consist of vacant land once occupied by a rooming house.

The remaining building is currently vacant and the site is owned by and in the care of Klamath County. The subject site/property is located in downtown Chiloquin, Oregon, which will herein be referred to as "The Subject Site/Property" or "the Site". According to information on the Klamath County Tax Assessor records the Subject Property consists of two parcels (Parcel ID 3407-034DC-00500 and Parcel ID 3407-034DC-00400) of land totaling approximately 0.55 acres and is located at the northeast of the North 1st Avenue and West Chocktoot Street intersection (**Figure 2-3**).

Photos of the Subject Property and surrounding properties taken during the site visit are provided in **Appendix A.** A surrounding land use map is provided as **Figure 4**. This assessment was performed under and funded by the City of Chiloquin's Business of Oregon Brownfield Grant in general accordance with 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries and ASTM Standard Practices E1527-13 for Environmental Site Assessments.

This assessment was performed to satisfy the requirements of City of Chiloquin (Client) with respect to identifying potential environmental impairment and liabilities associated with the property due to contamination by hazardous substances, controlled substances, or petroleum products on or near the site. The City of Chiloquin is considering taking title to the Subject Property and is of the opinion that the property may have significant residential, commercial, or mixed-use development potential.

This Phase I Environmental Site Assessment was completed in general accordance with ASTM Standard: E 1527-13 – Standard Practice for Environmental Site Assessments. This report meets the general requirements for conducting all appropriate inquiry into the previous ownership, uses, and environmental conditions of a property, as specified in 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries. Furthermore, this work was conducted by or under the responsible charge of an environmental professional as defined in 40 CFR §312.10.

ASTM Standard Practice E1527-13 defines a Recognized Environmental Condition (REC) as:

"The presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: 1) due to any release to the environment, 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment. The term is not intended to include *de Minimis* conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies."

ASTM Standard Practice E1527-13 defines a Controlled Recognized Environmental Condition (CREC) as:

"A recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."

ASTM Standard Practice E1527-13 defines a Historical Recognized Environmental Condition (HREC) as:

"A past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted residential use criteria established by a regulatory authority, without subjecting the property to any required controls."

1.1 Findings and Conclusions

Cardno completed this Phase I ESA of the Subject Site in conformance with the scope and limitations of ASTM Standard E 1527-13. Any exceptions to or deletions from this practice are described in Section 2.0 of this report. The following RECs associated with the Subject Property were identified during this assessment:

FINDINGS AND CONCLUSIONS SUMMARY						
	Report Section	Further Action?	De <i>minimis</i> Condition	REC and/or CREC	HREC	Description
4.0	User Provided Information	No	No	No	No	
5.1	Federal, State and Local Database Findings	No	No	No	No	The former Texaco gas station to the west across North 1 st Avenue is considered a HREC as it received a No Further Action designation from Oregon DEQ. (HREC #1).
5.2	Additional Environmental Record Sources	No	No	No	No	
5.3	Local Environmental Record Sources	No	No	No	No	
5.3	Historical Records Sources	Yes	No	Yes	No	A Printing facility (REC #4) and a Cleaning facility (REC #5) were identified in the 1931 Sanborn FIM.
6.2	Hazardous Substance Use, Storage and Disposal	Yes	No	Yes	No	Former use as an auto repair garage of unknown best management practices in disposal of hazardous substances (REC #2).
6.3	Underground Storage Tanks	Yes	No	Yes	No	Possible UST(s) and/or heating oil tank on the Subject Property (REC #1 & 3).
6.4	Aboveground Storage Tanks	No	No	No	No	
6.5	Other Petroleum Products	No	No	No	No	
6.6	Polychlorinated Biphenyls (PCBs)	Yes	No	Yes	No	Three in-ground hydraulic lifts were observed in the on-site building (REC #2).
6.7	Unidentified Substance Containers	No	No	No	No	
6.8	Nonhazardous Solid Waste	No	No	No	No	A pile of wood chips was observed within the on-site building. The former adjacent building to the North was demolished and the associated debris remains on-site.
6.9	Wastewater	No	No	No	No	
6.10	Waste Pits, Ponds, and Lagoons	No	No	No	No	
6.11	Drains and Sumps	No	No	No	No	
6.12	Septic Systems	No	No	No	No	

6.13	Storm water Management System	No	No	No	No	A stormwater drain was observed along W. Chocktoot St.
6.14	Wells	No	No	No	No	
7.0	Subsurface Vapor Migration	Yes	No	Yes	No	There is potential for vapor migration from the RECs below (RECs #1-5).
8.0	Interviews	No	No	No	No	
9.1	Asbestos Containing Material	Yes	No	No	No	Asbestos-containing materials have been identified in association with the remaining building. The potential for asbestos containing material in the debris form the collapsed building also exists.
9.2	Lead-Based Paint	Yes	No	No	No	Lead-based paints have been identified in association with the remaining building. The potential for lead-based paint in the debris from the collapsed building also exists.

The RECs identified during this assessment are located on **Figure 6.** Phase II ESA investigations and/or other actions are recommended to fully characterize the Subject Property.

On-Site REC

1. According to the 1931 Sanborn FIM, the building was used as an auto repair garage and an area with-in the on-site building, at the southwest corner, is labeled "Gas & Oil". Further, during site reconnaissance, Cardno personnel identified a potential UST vent pipe attached to the west interior wall of the on-site building. Therefore, there is potential for a UST(s) to exist on the property and said tank may have impacted the soil, groundwater, and/or vapor at the Subject Property.

2. The remains of three in-ground hydraulic lifts and one oil-changing pit were observed in the building. According to the 1931 Sanborn Fire Insurance Map (FIM), the on-site building is labeled as being an auto repair/garage facility. Additionally, based on the age of the building, this time-frame predates the regulation of the storage/disposal of hazardous substances such as used oil and other non-regulated automobile chemicals. Based on the age and duration of use, the in-ground lifts and unknown chemical management and disposal practices associated with historic operations, site soil, groundwater, and/or vapor may have been impacted by historic site operations.

3. During site reconnaissance, Cardno identified a potential vent pipe in the interior of the building along the eastern wall. This could be an indication for a UST and/or heating oil tank to exist on the Subject Property. Based on the age and duration of the former use of the building, there is potential for a UST/heating oil tank on the property that may have impacted the soil, groundwater, and/or vapor at the Subject Property.

Off-Site RECs

4. According to the 1931 Sanborn FIM, a Printing facility is located approximately 80 feet to the east. The length of operation for this facility is unknown. There is potential for a release from this facility.

5. According to the 1931 Sanborn FIM, a Cleaning facility is located approximately 120 feet to the southeast. The length of operation for this facility is unknown. There is a potential for a historic release from this facility.

Off-site HRECs

1. According to Oregon Department of Environmental Quality (ODEQ) records, the former Chiloquin Texaco, located west and approximately 45 feet away, indicate that four USTs were installed pre-1989 which predates UST registration. These tanks were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. The

new tanks were subsequently removed in 2017. Post-excavation confirmation sampling conducted in 2017 and soil sampling conducted in June 2018 indicate that the residual petroleum in soil are low. On July 22, 2019, ODEQ granted an NFA determination letter for the Chiloquin Texaco site. Based on the issuance of an NFA, and given the assumed ground waterflow direction away from the subject site, this facility is considered a historical REC. See Section 5.1 for further details.

Asbestos-Containing Materials

Asbestos containing materials (ACMs) were identified throughout the interior of the building including:

- Interior white skim coat on plaster surfacing, totaling approximately 3,600 square feet (SF), located within the western most portions of the on-site building.
- Interior white texture and joint compound on drywall, totaling approximately 1000 SF, located within the western most portions of the on-site building.
- Interior white caulk, totaling approximately 50 linear feet (LF), located on interior west wall windows.

Overall, given the state of the buildings, most of these materials were in good to fair condition. Therefore, the identified ACM has a low probability of disturbance during ordinary use. Prior to any renovation or demolition that may cause the ACM to become friable, the material should be removed or abated by a qualified asbestos abatement contractor.

The following suspect building materials were not sampled and should be considered presumed asbestos containing materials (PACM):

• Exterior building debris from former attached north addition, totaling approximately 650 cubic yards (CY).

The building to the north was constructed around the same time as the remaining building, and the building debris appeared to have suspect materials. Therefore, the building debris/rubble should be considered asbestos containing until sampling by a licensed asbestos inspector indicates otherwise.

Lead-Based Paint

Lead-based paint (LBP) was identified on various painted surfaces throughout the interior and exterior of the building in various tenant spaces including:

- Red paint on exterior concrete masonry unit (CMU), totaling approximately 3,600 SF, located on the exterior east, south, and west walls.
- Tan/gray paint on interior ceiling, totaling approximately 1,200 SF, located on wood board ceiling on the southwest corner of the building.

Most of the identified painted surfaces were in poor condition, with peeling and deterioration noted. As the building is not considered to be child-occupied facility, the identified LBP can be left intact unless disturbed during renovation or demolition.

A more detailed summary of the ACM and LBP inspection will be provided under a separate cover and included as **Appendix H**.

Please note: This is a cursory summary of findings. The full report must be read in its entirety for a comprehensive understanding of the stated conclusions/recommendations

2 Introduction

2.1 Purpose

The purpose of this Phase I ESA was to identify RECs in connection with the property at the time of the site reconnaissance. The scope of work for this Phase I ESA may also include certain potential environmental conditions beyond the scope of *ASTM Standard Practice E1527-13*. This report documents our assessment, conclusions, and recommendations.

2.2 Detailed Scope of Services

This Phase I ESA was conducted in general accordance with the *ASTM Standard Practice E1527-13*, consistent with a level of care and skill ordinarily practiced by the environmental consulting profession currently providing similar services under similar circumstances. Significant additions, deletions or exceptions to *ASTM Standard Practice E1527-13* are noted below and detailed in the corresponding sections of this report. The scope of this assessment included following evaluations:

- Assessment of the physical characteristics of the property through a review of referenced sources such as available topographic maps and geologic, soils, and hydrogeological reports.
- Review of the Subject Property, adjoining properties, and surrounding area via referenced historical sources such as land title records, fire insurance maps, city directories, aerial photographs, prior reports, and interviews.
- Site observation and interviews with knowledgeable persons regarding the current property usage and conditions including: use, treatment, storage, disposal, or generation of hazardous substances/waste, petroleum products, nonhazardous solid wastes, and wastewater.
- Assessment of the use and condition of adjoining and surrounding properties and their likely impact on the Subject Property from known or suspected releases of hazardous substances or petroleum products.
- Review of information in referenced environmental agency databases and local environmental records from within the specified minimum search distances from the property.
- Assessment of the potential for subsurface vapor encroachment.
- Asbestos and Lead-Based Paint (LBP) sampling to identify asbestos-containing building materials (ACM) or LBP.

No additional investigations, work, or other quantitative/qualitative testing was performed as part of this assessment that was not required by the *ASTM Standard Practices E1527-13*. An example of non-scope investigations includes, but are not limited to, the following: Radon, Lead in Drinking Water, Wetlands, Regulatory Compliance, Cultural and Historic Resources, Industrial Hygiene, Health and Safety, Geotechnical Evaluation, Sinkhole Evaluation, Ecological Resources, Endangered Species, Indoor Air Quality, Vapor Intrusion, Biological Agents, and Mold.

2.3 Significant Assumptions

While this report provides an overview of potential past and present environmental concerns, the environmental assessment is limited by the availability of information at the time of the assessment. It

is possible that unreported disposal of waste or illegal activities impairing the environmental status of the property may have occurred which could not be identified.

The findings and recommendations regarding environmental conditions that are presented in this report are based on the scope of work authorized by the Client. It should be noted, that no matter how exhaustive an assessment might be, there still exists the potential for unidentified environmental conditions above or below ground. Cardno also assumes that the Client and other interested parties will read this report in its entirety.

2.4 Limitations, Exceptions, Deviations and/or Data Gaps

Cardno has prepared this Phase I ESA report using reasonable efforts to identify RECs associated with hazardous substances or petroleum products at the Site. Findings contained within this report are based on information collected from observations made during the site reconnaissance on October 6, 2020 and reasonably ascertainable information obtained from public agencies and other referenced sources.

The ASTM Standard Practice E1527-13 recognizes inherent limitations for Phase I ESAs, including, but not limited to:

- Uncertainty Not Eliminated A Phase I ESA cannot completely eliminate uncertainty regarding the potential for recognized environmental conditions in connection with any property.
- *Not Exhaustive* A Phase I ESA is not an exhaustive investigation of the property and environmental conditions on such property.
- Past Uses of the Property Phase I requirements only require review of standard historical sources at five-year intervals. Therefore, past uses of property at less than five-year intervals may not be discovered.

Users of this report may refer to *ASTM Standard Practice E1527-13* for further information regarding these and other limitations. This report is not definitive and should not be assumed to be a complete and/or specific definition of all conditions above or below grade. Current subsurface conditions may differ from the conditions determined by surface observations, interviews, and reviews of historical sources. The most reliable method of evaluating subsurface conditions is through intrusive techniques, which are beyond the scope of this report. Information in this report is not intended to be used as a construction document and should not be used for demolition, renovation, or other property construction purposes. Any use of this report by any party, beyond the scope and intent of the original parties, shall be at the sole risk and expense of such user.

Cardno makes no representation or warranty that the past or current operations at the property are, or have been, in compliance with all applicable Federal, State, and local laws, regulations, and codes. This report does not warrant against future operations or conditions, nor does it warrant against operations, conditions, and locations not investigated. Regardless of the findings stated in this report, Cardno is not responsible for consequences or conditions arising from facts not fully disclosed to Cardno during the assessment.

An independent data research company provided the government agency database referenced in this report. Information on surrounding area properties was requested for approximate minimum search distances and is assumed to be correct and complete unless obviously contradicted by Cardno's observations or other credible referenced sources reviewed during the assessment. Cardno shall not

be liable for any such database firm's failure to make relevant files or documents properly available, to properly index files, or otherwise to fail to maintain or produce accurate or complete records.

Cardno makes no warranty, guarantee or certification regarding the quality, accuracy, or reliability of any prior report provided to Cardno and discussed in this Phase I ESA report. Cardno expressly disclaims any and all liability for any errors or omissions contained in any prior reports provided to Cardno and discussed in this Phase I ESA report.

Cardno used reasonable efforts to identify evidence of aboveground and underground storage tanks and ancillary equipment on the property during the assessment. "Reasonable efforts" were limited to observation of accessible areas, review of referenced public records, and interviews. These reasonable efforts may not identify subsurface equipment or evidence hidden from view by things including, but not limited to, vegetation, paving, construction activities, stored materials, and landscaping.

Any estimates of costs or quantities in this report are approximations for commercial real estate transaction due diligence purposes and are based on the findings, opinions and conclusions of this assessment, which are limited by the scope of the assessment, schedule demands, cost constraints, accessibility limitations and other factors associated with performing the Phase I ESA. Subsequent determinations of costs or quantities may vary from the estimates in this report. The estimated costs or quantities in this report are not intended to be used for financial disclosure related to the *Financial Accounting Standards Board (FASB) Statement No. 143, FASB Interpretation No. 47, Sarbanes/Oxley Act* or any United States Securities and Exchange Commission reporting obligations, and may not be used for such purposes in any form without the express written permission of Cardno.

Cardno did not act as a professional title insurance or land surveyor firm as part of this investigation, and makes no guarantee, express or implied, that any land title records acquired or reviewed in this report, or any physical descriptions or depictions of the property in this report, represent a comprehensive definition or precise delineation of property ownership or boundaries.

The Environmental Professional statement in Section 1.1 of this report does not "certify" the findings contained in this report and is not a legal opinion of such Environmental Professional. The statement is intended to document Cardno's opinion that an individual meeting the qualifications of an Environmental Professional was involved in the performance of the assessment and that the activities performed by, or under the supervision of, the Environmental Professional were performed in conformance with the standards and practices set forth in 40 CFR Part 312 per the methodology in *ASTM Standard Practice E1527-13* and the scope of work for this assessment.

Per ASTM Standard Practice E1527-13, Section 6, User Responsibilities, the User of this assessment has specific obligations for performing tasks during this assessment that will help identify the possibility of recognized environmental conditions in connection with the property. Failure by the User to fully comply with the requirements may impact their ability to use this report to help qualify for Landowner Liability Protections (LLPs) under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Cardno makes no representations or warranties regarding a User's qualification for protection under any Federal, State or local laws, rules or regulations.

In accordance with the *ASTM Standard Practice E1527-13*, this report is presumed to be valid for a sixmonth period. If the report is older than six months, the following information must be updated in order for the report to be valid: (1) regulatory review, (2) site visit, (3) interviews, (4) specialized knowledge and (5) environmental liens search. Reports older than one year may not meet *the ASTM Standard Practice E1527-13* and therefore, the entire report must be updated to reflect current conditions and property-specific information No data gaps were identified during this Phase I investigation.

2.5 Special Terms and Conditions (User Reliance)

This report is for the use and benefit of, and may be relied upon by the City of Chiloquin, as well as any of their affiliates, respective successors, and assigns, in connection with a commercial real estate transaction involving the property, and in accordance with the terms and conditions in place between Cardno and the Client for this project. Any third party agrees by accepting this report that any use or reliance on this report shall be limited by the exceptions and limitations in this report, and with the acknowledgment that actual site conditions may change with time, and that hidden conditions may exist at the property that were not discovered within the authorized scope of the assessment. Any use by or distribution of this report to third parties, without the express written consent of Cardno is at the sole risk and expense of such third party.

Cardno makes no other representation to any third party except that it has used the degree of care and skill ordinarily exercised by environmental consultants in the preparation of the report and in the assembling of data and information related thereto. No other warranties are made to any third party, either expressed or implied.

3 Site Description

3.1 Location and Legal Description

The Subject Site is comprised of two tax parcels, currently owned by the Klamath County, located at the center of downtown Chiloquin, Oregon as shown on **Figures 2 and 3**. The Subject Property is bound by a commercial facility to the north, undeveloped/vacant land to the northeast, multi-commercial facility to the east, Sky Lakes Wilderness Adventures and Klamath Tribal Courts & Child Support Enforcement Office to the southeast, the Hirvi building to the south, a former gas station to the west, and the former Union Oil Bulk Plant property to the northwest. According to the Klamath County Tax Assessor's website, the Site encompasses two parcels totaling approximately 0.55 acres. The Subject Property currently is developed with a single-story commercial building of concrete block and brick facade construction. A second building which was once occupied by the Chiloquin Mercantile that collapsed and was demolished with the exception of a vault. The associated rubble remains on-site. The building is currently vacant and in the care of Klamath County.

3.2 Surrounding Area General Characteristics

The Subject Property is located in a mixed commercial and residential use area in downtown Chiloquin, Oregon. The surrounding areas to the north, east, west, and south are commercially developed. A surrounding land use map is included as **Figure 4**.

3.3 Current Use of the Property

At the time this report was developed, the Subject Property was vacant.

Approximate Size of Property	0.55 acre
General Topography of Property	The majority of the Subject Site is relatively flat, sloping slightly west/southwest towards the Williamson River.
Adjoining and/or Ingress/Egress Roads	The ingress points for the Subject Property observed via North 1 st Avenue and West Chocktoot Street
Paved Areas	There are no paved areas on the Subject Property.
Unimproved Areas	There are no unimproved areas on the Subject Property.
Landscaped Areas	There are landscaped areas on the north portions of the Subject Property.
Surface Water	None
Potable Water Source	City of Chiloquin
Sanitary Sewer Utility	Available
Electrical Utility	Available
Natural Gas Utility	Available
Current Occupancy Status	Vacant
Unoccupied Buildings/Spaces/Structures	Vacant
Building Name or General Building Description	Former Markwardt Brothers garage and auto sales ; currently vacant. The remains of an adjacent collapsed/demolished building are located to the north
Number of Floors	One with partial mezzanine/loft
Approximate Total Square Footage of Structure(s)	Former Markwardt Bros. Garage: 8,500 sq. ft. Vault: 150 sq. ft.

Construction Completion Year Vault: Pre-1931	Construction Completion Year	Former Markwardt Bros. Garage: Pre-1931 Vault: Pre-1931
--	------------------------------	--

3.4 Current Uses of Adjoining Properties

Direction from Property	Occupant(s) Name	Current Use	Potential REC(s)
South	Hirvi Building	Commercial	None
West	Former Texaco Gas Station	Commercial	HREC #1
Northwest	Vacant	Undeveloped/Vacant	None
North	Vacant	Commercial	None
Northeast	Undeveloped/Vacant	Undeveloped/Vacant	None
East	Vacant Multi-Commercial facility	Vacant Commercial	None
Southeast	Sky Lakes Wilderness Adventures	Commercial	None
Southeast	Klamath Tribal Courts & Child Support Enforcement Office	Municipal	None

4 User Provided Information

4.1 Title Records

A complete title search was not requested by the User (Client, City of Chiloquin) as part of this assessment, nor did the User provide title record information. However, according to information accessed from the Klamath County Tax Assessor, the parcels which make up the Subject Property is currently owned by Klamath County. Ownership of the property was acquired as a tax foreclosure action. No information indicated the exact date of property acquisition; however, Mr. Rick Vaughn stated Klamath County has been associated with the property for two years.

4.2 Environmental Liens or Activity and Use Limitations (AULs)

The User provided no information regarding property environmental liens or activity and use limitations (AULs). However, any liens and AULs associated with the property (if any) are anticipated to be addressed by the End User/Current Site Owner as part of the land/title transaction process.

4.3 Specialized Knowledge

The User provided no specialized knowledge regarding recognized environmental conditions associated with the property, other indicating that the site was used as an auto repair garage at one period of time, and that there may have been underground storage tanks on-site at one time.

4.4 Valuation Reduction for Environmental Issues

The User stated the building may have conducted fueling operations. However, no other information was provided regarding a significant valuation reduction for environmental issues associated with the property (Appendix B).

4.5 Owner, Property Manager, and Occupant Information

The Subject Property is owned by Klamath County. A copy of the AAI interview questionnaire completed by Mr. Rick Vaughn, Tax Collector and Property Manager for Klamath County, is also included in **Appendix B**.

4.6 Reason for Performing Phase I

This assessment was performed to satisfy the requirements of the Client and other interested parties with respect to potential environmental impairment associated with the property due to contamination by hazardous substances, controlled substances, or petroleum products on or near the site. The Subject Site was selected by the City of Chiloquin as a potential location for future residential or mixed-use development, or other public use.

5 Records Review

The purpose of the records review is to obtain and review records that will help identify RECs in connection with the property. Some records reviewed pertain not only to the property, but also to properties within a minimum search distance in order to assess the likelihood of potentially migrating hazardous substances or petroleum products. Unless stated otherwise, the minimum search distances used below were as specified in *ASTM Standard 1527-13*.

5.1 Standard Environmental Record Sources

The regulatory agency database radius report discussed in this section, provided by Environmental Database Resources, Inc. (EDR), was reviewed for information regarding reported use or release of hazardous substances and petroleum products on or near the property. Unless otherwise noted, the information provided by the regulatory agency database report and other sources referenced in this report, were considered sufficient to determine RECs, CRECs, HRECs, or de minimis conditions without conducting supplemental agency file reviews.

Cardno also reviewed the unlocated (orphan) site listings within the database report, cross-referencing available address information and facility names. Unlocated sites are listings that could not be plotted with confidence, but are potentially in the general area of the property, based on the partial street address, city, or zip code. Any unlocated sites within the minimum search distance from the property that was identified by Cardno through site reconnaissance and/or cross-referencing to mapped listings are included in the discussion within this section. The complete regulatory agency database report is provided in **Appendix C.** The following is a summary of the findings of the database review:

Regulatory Database	Minimum Search Distance	Subject Property Listed?	No. of Sites Listed
Federal National Priority List (NPL)	1 mile	No	0
Federal Delisted NPL (DNPL)	½ mile	No	0
Superfund Enterprise Management Systems (SEMS) formerly the Federal Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) list	½ mile	No	0
Federal Resource Conservation and Recovery Act (RCRA), Corrective Action facilities (RCRAC)	1 mile	No	0
Federal RCRIS non-CORRACTS Treatment, Storage, and Disposal Facilities (RCRAT)	1⁄2 mile	No	0
Federal RCRA Generators (RCRAGR10)	1⁄4 mile	No	0
Federal Engineering Institutional Control Sites (EC)	Property	No	0
Federal Emergency Response Notification System (ERNSOR) list	Property	No	0
Facility Registry System (FRSOR)	Property	No	0
Enforcement and Compliance History Information (ECHOR10)	Property	No	0
RCRA NonGen/NLR (RCRANGR10)	¼ mile	No	2

Regulatory Database	Minimum Search Distance	Subject Property Listed?	No. of Sites Listed
Hazardous Materials Incident Reporting System (HMIRSR10)	Property	No	0
PCB Activity Database System (PADS)	Property	No	0
Alternative Fueling Stations (ALTFUELS)	1⁄4 mile	No	0
State Landfill or Solid Waste Disposal Sites (LFSWDS)	½ mile	No	0
State Leaking Underground Storage Tanks (LST)	½ mile	No	3
Tribal Leaking Underground Storage Tanks (LUSTR10)	½ mile	No	0
Heating Oil Tank Incidents (HOT)	½ mile	No	0
State Registered Underground Storage Tanks (UST)	¼ mile	No	3
State Registered Aboveground Storage Tanks (AST)	¼ mile	No	2
Tribal Registered Underground/Aboveground Storage Tanks (USTR10)	1⁄4 mile	No	0
State Institutional Control/Engineering Control Registry (ICEC)	Property	No	0
State Voluntary Cleanup Sites (VCP)	½ mile	No	3
State Brownfield Sites (Brownfield)	½ mile	No	1
State Drycleaners (Cleaners)	½ mile	No	0
State Environmental Cleanup Site Information Database (ECSI)	½ mile	No	13
HazMat/Incidents (SPILLS)	Property	No	0
Permitted Air Dischargers (AIRS)	Property	No	0
Environmental Response Program Spills (RSPILLS)	Property	No	0

Thirty-six (36) database records were noted and located within a 1-mile radius of the target area by the database search. There are fewer sites than records as a particular site may appear on more than one environmental database. Several of the listed facilities may represent a REC/CREC/HREC environmental concern due to distance, anticipated direction of groundwater flow, and/or anticipated risk of contamination. Further details regarding the Subject Property and sites listed on the Environmental Database Resources database within 0.25 mile of the Subject Property are provided below.

• Chiloquin Texaco (HREC #1)

Location: Northwest of the North 1st Avenue and West Chocktoot Street intersection Located approximately 45 feet west and topographically downgradient of the Subject Property Summary: The Chiloquin Texaco property is listed in the EDR radius report as an Underground Storage Tank (UST), Leaking Underground Storage Tank (LUST), Facility Index System/Facility Registry System (FINDS), Brownfields, and EDR Historic auto repair (EDR HIST AUTO) database. Cardno reviewed Stantec's Independent Cleanup Pathway Final Report dated April 18, 2019 of the former service station. Oregon Department of Environmental Quality (ODEQ) records indicated that four USTs were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. This facility utilized one 2,000-gallon; one 4,000-gallon; and one 6,000-gallon USTs. ODEQ records indicate that the 2,000-gallon UST was converted from storing "super" grade gasoline to storing diesel in 2003.

In July 1994, two 550-gallon gasoline USTs, one 1,000-gallon gasoline UST, and one 2,000-gallon gasoline UST were removed from the ground. Approximately 40 cubic yards of concrete and impacted soil were removed from the tank excavation. Two soil samples were collected at the bottom of the tank excavation area and detected gasoline-range hydrocarbons ranging from 28 to 860 milligrams per kilogram (mg/kg). Approximately 360 gallons of groundwater was pumped from the tank excavation into 55-gallon drums from July 13-25, 1994. Four groundwater samples were collected from the purged groundwater and submitted for benzene, toluene, ethylbenzene, and total xylenes (BTEX). The maximum BTEX constituent concentration detected was total xylenes at 15 milligrams per liter (mg/l). The property owner reported a release from the USTs to ODEQ in July 1994.

In 2017, Stantec oversaw the removal of one 6,000-gallon gasoline UST and a 6.000-gallon compound UST comprised of a 4.000-gallon gasoline UST compartment and a 2,000-gallon diesel UST compartment. Subsequently, Stantec installed six soil borings adjacent to the tank excavation area to approximately 15 feet below ground surface (ft bgs) and converted the borings to temporary groundwater monitoring wells. Soil samples were collected from the tank excavation area and from the installed soil borings. The highest TPH-Gx concentrations were detected in the southern and western excavation sidewalls ranging from 28.6 mg/kg to 4,200 mg/kg. Soil samples analyzed from soil borings detected TPH-Gx in three soil samples with concentrations ranging from 33.9 ma/ka to 2.780 ma/ka. In boring GP-1, located in the North 1st Avenue right-ofway upgradient from the UST excavation, TPH-Gx was detected at 33.9 mg/kg at 1 ft bgs. In 2018, groundwater samples were collected and TPH-Gx concentrations were below 1 mg/l with the exception of one sample where TPH-Gx was detected at 14 mg/l that was located downgradient (northwest) of the tank excavation area. Post-excavation confirmation sampling conducted in 2017, and soil sampling conducted in June 2018 indicate that the residual petroleum in soil are low.

On July 22, 2019, ODEQ granted a no further action (NFA) determination letter for the Chiloquin Texaco. Based on the issuance of an NFA, and the documented groundwater flow direction to the northwest, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Chiloquin Standard Oil Bulk Plant

- Location: Chocktoot Street Located approximately 315 feet southwest and topographically crossgradient of the Subject Property
- Summary: The facility is listed in the following EDR database records: Environmental Cleanup Site Information System (ECSI), Voluntary Cleanup Program (VCP), Brownfields, and FINDS databases. According to the Environmental Database Resources database report, this site was reportedly occupied by a series of bulk plant operators from 1984 through 2005. ODEQ records show that four gasoline USTs and one diesel UST were removed from the site in 1991. In January 2006, 38 test pits were excavated to a depth of approximately 4 ft bgs to evaluate potential impacts to soil. Soil samples from each test pit were analyzed for gasoline, diesel, and heavy oil-range petroleum hydrocarbons, volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), and total lead. Benzene was the only constituent found in soil at concentrations exceeding applicable risk screening levels.

In 1993, four groundwater monitoring wells were installed and in September 2008, three additional wells were installed. Groundwater sampling events occurred intermittently from 1993 to 2011. Groundwater analytical data indicated no constituents were detected in groundwater above applicable ODEQ human health risk screening criteria and impacts on ecological receptors are not significant. From these seven groundwater monitoring wells, potentiometric surface data indicate groundwater flow is towards the Williamson River to the northwest.

According to the EDR radius report, ODEQ records indicate that the proposed remedial action was conducted between August and October 2012. Based on confirmation sampling and since residual contamination does not exceed acceptable risk levels, ODEQ issued an NFA determination letter on January 28, 2013. Based on the NFA issuance and groundwater flow direction, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Modoc Motors

- Location: 0 Chocktoot Street Located approximately 425 feet northwest and topographically downgradient of the Subject Property
- Summary: The facility is listed in the EDR database as an ECSI facility. According to the Environmental Database Resources database report, ODEQ added this site to the ECSI database for tracking as a former auto repair facility in August 2010. However, no violations or releases have been reported for this facility. Based on the distance, lack of documented releases, and inferred groundwater flow direction, this facility does not appear to have impacted the Subject Property.

Chiloquin Cleaning & Pressing (REC #4)

- Location: Southwest corner of West Chocktoot Street and South 2nd Avenue Located approximately 115 feet southeast and topographically upgradient of the Subject Property (See **Figure 5**)
- Summary: The facility is listed in the EDR database as an ECSI and FINDs facility. According to the Environmental Database Resources database report, ODEQ added this site to the ECSI database for tracking as a former dry-cleaning facility in

November 2001. No information indicated the duration of operation; however, the age of this facility pre-dates chlorinated solvents and likely handled Stoddard solvents. Based on the distance and inferred groundwater flow direction, this facility may have impacted the Subject Property.

• Telephone Utilities of Eastern Oregon

- Location: Southwest corner of South 2nd Avenue and East Yahooskin Street Located approximately 120 feet northeast and topographically crossgradient of the Subject Property
- Summary: The facility is listed in the EDR database as an UST facility. According to the Environmental Database Resources database report, this facility utilized one UST of unknown size and contents that was reportedly decommissioned. Cardno reviewed ODEQ's list of registered tanks but information for this facility was not ascertainable. Based on the lack of reported releases and inferred groundwater flow direction, this facility it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Chiloquin Agency Lake Fire District

Location: 156 South 2nd Avenue

Located approximately 445 feet south and topographically crossgradient of the Subject Property

Summary: The facility is listed in the EDR database as an AST and Hazardous Substance Information Survey (HSIS) facility. According to the Environmental Database Resources database report, this facility utilizes one AST cylinder of nitrogen of unknown size. However, there are reported releases or violations. Based on the lack of reported releases, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

• Tony Reyes

Location: 123 South 3rd Street

Located approximately 450 feet south and topographically crossgradient of the Subject Property

Summary: The facility is listed in the EDR database as a Resource Conservation and Recovery Act – Non-Generator / No Longer Regulated (RCRA NonGen/NLR) facility. According to the Environmental Database Resources database report, this facility is no longer a RCRA generator and no other information is provided. Based on the lack of reported releases, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Klamath County School District

Location: 131 South 3rd Street Located approximately 615 feet southeast and topographically crossgradient of the Subject Property

Summary: The facility is listed in the EDR database as an AST and Hazardous Substance Information Survey (HSIS) facility. According to the Environmental Database Resources database report, this facility utilizes one AST of propane of unknown size. However, there are reported releases or violations. Based on the lack of reported releases, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

• Wampler Logging

Location:

 212 North Klamath Avenue
 Located approximately 620 feet northwest and topographically downgradient of the Subject Property

Summary: The facility is listed in the EDR database as an ECSI and FINDs facility. According to the Environmental Database Resources database report, ODEQ added this site to the ECSI database for tracking as an active logging facility in November 2006. Additionally, Environmental Database Resources database reports this facility is no longer a RCRA generator and no other information is provided. Based on the lack of reported releases, this facility does not appear to have impacted the Subject Property. Based on the distance and inferred groundwater flow direction, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Chocktoot Street Petroleum Releases

- Location: 0 Chocktoot Street (East of bridge) Located approximately 785 feet northwest and topographically downgradient of the Subject Property
- Summary: The facility is listed in the EDR database as an ECSI facility. According to the Environmental Database Resources database report, ODEQ discovered petroleum contamination while sampling for a street project in August 2010. However, based on distance and assumed groundwater flow direction, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

• Clyde's Fairway Market

Location: 323 Chocktoot Street

Located approximately 1,170 feet northwest and topographically downgradient of the Subject Property

Summary: The facility is listed in the EDR database as an ECSI facility. According to the Environmental Database Resources database report, ODEQ added this site to the ECSI database for tracking as a former service station facility in March 2004. However, based on distance and groundwater flow direction, it is not likely that this facility has impacted the environmental integrity of the Subject Property.

Additional sites were identified between 0.25 and ½ mile in the Environmental Database Resources database records search. However, based upon distance, intervening topographic gradient, proximity to the river, and regulatory information provided, these facilities are not considered potential environmental concerns with respect to the Subject Site. Based on a review of the database and windshield survey of the are there are no off-site RECs associated with the property.

5.2 Physical Setting Sources

An EDR Physical Setting Map report is included in **Appendix C.** According to this report, surficial soil at the Site is Lobert sandy loam. Additionally, the Site is underlain by Pliocene fluvial sedimentary deposits.

The Site is located on the Chiloquin, OR 2014 USGS 7.5-minute series topographic map. The topography at the Subject Property slopes gently to the west. Elevation at the Site is approximately 4,195 – 4,200 feet above mean sea level (MSL). Based on the mapped topography of the site, the

inferred primary direction of groundwater flow for the vicinity of the Subject Site is anticipated to be generally northwest towards the Williamson River. However, it is feasible that localized variations in ground water flow may exist, and a site-specific determination would be required to verify ground water flow direction.

5.3 Historical Records Sources

5.3.1 <u>Aerial Photographs, Topographic Maps, and Sanborn Fire Insurance Maps</u>

The objective of consulting historical sources is to determine the likelihood of past uses having led to recognized environmental conditions in connection with the Subject Site. A review was conducted of historical aerial photographs (**Appendix D**) and topographic maps (**Appendix E**) obtained from Environmental Database Resources.

Additionally, Sanborn Fire Insurance Maps (FIMs) have been produced since the late 1800s to provide information relative to fire hazards on insurable property. These maps often indicate locations of underground and aboveground gasoline tanks, storage facilities for flammable and hazardous chemicals, such as dry cleaners, paint shops, maintenance and garage facilities, as well as historical information on occupants of buildings, unavailable through other sources. Production of these maps typically was limited to the immediate vicinity of downtown urban areas. The detailed EDR Sanborn FIMs report is included in **Appendix F**. Findings of review of the historical Sanborn Fire Insurance Maps are chronologically summarized in the following table.

		Identified H	Commente		
Period	Source(s)	Subject Property	Surrounding Area	Comments	
1931	Sanborn FIM (Figure 5)	A large auto repair/garage building is depicted on the Subject Property. An area at the southwest corner within the auto repair building is labeled "Gas & Oil". A building addition is connected to the auto repair building to the north. Additionally, a building is depicted on the northern portion and labeled "Rooms" on the Subject Property.	A Printing facility is located to the east. A Cleaning facility is located to the southeast. The S.P.CO. Railroad is located west of the Subject Property. A Shell Oil Co. facility with one steel oil tank and oil warehouse is located to the west. An auto repair garage is located to the southwest.	The "Gas & Oil" (REC #1) and auto repair/garage (REC #2) at the on-site building are RECs. The Printing facility (REC # 4) and the Cleaning facility (REC #5) are considered RECs based on the review of the Sanborn Map.	
1953	Aerial Photograph	A commercial building appears on the Subject Property.	Commercial buildings are to the south and west. Residential buildings are in the surrounding area. A railroad and river appear to the west.	No additional RECs noted.	

Findings of review of the historical aerial photos, topographic maps, and Sanborn FIMs are chronologically summarized in the following table:

		Identified H	0	
Period	Source(s)	Subject Property	Surrounding Area	Comments
1955	Aerial Photograph	Blurry; similar to previous aerial photograph.	Blurry; similar to previous aerial photograph.	No additional RECs noted.
1957	Topographic Map	A building is depicted on the Subject Property	Several commercial buildings and residential dwellings appear in the surrounding area. A railroad and river appear to the west. A water tower is located to the east.	No additional RECs noted.
1975	Aerial Photograph	Similar to previous aerial photograph.	Several commercial buildings appear to have been removed to the southeast. A commercial building appears at the north adjoining property.	No additional RECs noted.
1982	Aerial Photograph	Similar to previous aerial photograph.	Additional commercial development appears to the south.	No additional RECs noted
1994	Aerial Photograph	Similar to previous aerial photograph.	Additional commercial development appears to the northeast and east. A gas station appears to the west.	The off-site gas station is a HREC (HREC #1)
1998	Topographic Map	Similar to previous aerial photograph.	More residential and commercial structures in the surrounding area. The Chiloquin Airfield is depicted to the west.	No additional RECs noted.
2000	Aerial Photograph	Similar to previous aerial photograph.	Additional commercial development appears to the west.	No additional RECs noted.
2006	Aerial Photograph	Similar to previous aerial photograph.	Additional commercial development appears in the surrounding area.	No additional RECs noted.
2009	Aerial Photograph	Similar to previous aerial photograph.	Land clearing is visible to the northeast and south.	No additional RECs noted.
2012	Aerial Photograph	Similar to previous aerial photograph.	Similar to previous aerial photograph.	No additional RECs noted.
2014	Aerial Photograph	Similar to previous topographic map. The on- site structure is depicted.	Similar to previous topographic map. No structures are depicted on the map.	No additional RECs noted.
2016	Aerial Photograph	Similar to previous aerial photograph.	Similar to previous aerial photograph.	No additional RECs noted.

Note: Text in **bold** are environmental concerns and are further discussed below.

REC#1: According to the 1931 Sanborn FIM (**Figure 5**), the building is an auto repair/garage and an area within the on-site building, at the southwest corner, is labeled "Gas & Oil". Therefore, there is

potential for a UST(s) to exist on the property and said tank may have impacted the soil, groundwater, and/or vapor at the Subject Property.

REC #2: The on-site building operated as an auto repair facility from the 1930s to the 1960s. This timeframe predates the regulations of storage/disposal of hazardous substances such as used oil and other non-regulated automobile chemicals. Therefore, there is potential for release of hazardous materials in the soil and groundwater at the Subject Property.

REC #4: According to the 1931 Sanborn FIM (**Figure 5**), a Printing facility is located approximately 80 feet to the east. The length of operation for this facility is unknown. There is potential for a release from this facility.

REC #5: According to the 1931 Sanborn FIM (**Figure 5**), a Cleaning facility is located approximately 120 feet to the southeast. The length of operation for this facility is unknown. There is a potential for a release from this facility.

HREC #1: According to Oregon Department of Environmental Quality (ODEQ) records, the former Chiloquin Texaco, located west and approximately 45 feet away, indicate that four USTs were installed pre-1989, predates UST registration, and were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. Soil and groundwater samples were collected from within and adjacent to the tank excavation area. Analytical results indicated BTEX constituent concentrations were above applicable risk screening levels. However, post-excavation confirmation sampling conducted in 2017 and soil sampling conducted in June 2018 indicate that the residual petroleum in soil are low. On July 22, 2019, ODEQ granted an NFA determination letter for the Chiloquin Texaco. Based on the issuance of an NFA, this facility is considered a historical REC. See Section 5.1 for further details.

5.3.2 <u>City Directories</u>

Historical City directories are generally referenced for study areas to help identify changes in land use based on the type of businesses that occupied the Subject Site and surrounding area. The type of business, such as automotive, dry cleaning, gasoline/service stations, etc. are indicative of the possible presence of hazardous substances or petroleum products. The detailed City Directories reports are included in **Appendix G**. No Historical City Directories were available for the Subject Property and surrounding area prior to 1992.

Period	City Directory Identified Historical Uses		
	Subject Property	Surrounding Area	Comments
1992	No Listing	E. Yahooskin St.: Residential N. 1st Ave.: Residential	No RECs noted.
1995	No Listing	119 E. Yahooskin St.: Chiloquin Head Start 220 W. Chocktoot St.: Paul's Automotive Service 119 W. Chocktoot St.: Beas Antiques & Refinishing 323 W. Chocktoot St.: Clyde's Fairway Market	No RECs noted.
2000	No Listing	 210 S. 1st Ave.: Chiloquin Alternative Education Center 216 S. 1st Ave.: Chiloquin Branch Library 219 N. 1st Ave.: Chiloquin Awareness Committee Hoops Activity Center 	No RECs noted.
2005	No Listing	228 S. 1st Ave.: United States Postal Service	No RECs noted.

Period	City Directory Identified Historical Uses		
	Subject Property	Surrounding Area	Comments
2010	No Listing	S. 1 st Ave.: Chiloquin Community Correction 414 W. Chocktoot St.: Oregon Reflections	No RECs noted.
2014	No Listing	 118 W. Chocktoot St.: Klamath Tribal Court 201 W. Chocktoot St.: Chiloquin Shell & Food Mart 323 W. Chocktoot St.: Clyde's Fairway Market 127 S. 1st Ave.: Chiloquin Agency Lake Fire District 228 S. 1st Ave.: United States Government 221 N. 1st Ave.: Klamath Water Commission 119 E. Yahooskin St.: Head Start Klamath Tribes 	The Chiloquin Shell & Food Mart is a HREC (HREC #1).
2017	No Listing	 119 E. Yahooskin St.: Klamath Tribes 221 N. 1st Ave.: Klamath Water Commission 323 W. Chocktoot St.: Fairway Market 127 S. 1st Ave.: Chiloquin Agency Lake Fire District 140 S. 1st Ave.: Community Correction Chiloquin Office 	No additional RECs noted

Note: Text in **bold** are environmental concerns and are further discussed below.

HREC #1: According to Oregon Department of Environmental Quality (ODEQ) records, the former Chiloquin Texaco, located west and approximately 45 feet away, indicate that four USTs were installed pre-1989, predates UST registration, and were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. Soil and groundwater samples were collected from within and adjacent to the tank excavation area. Analytical results indicated BTEX constituent concentrations were above applicable risk screening levels. However, post-excavation confirmation sampling conducted in 2017 and soil sampling conducted in June 2018 indicate that the residual petroleum in soil are low. On July 22, 2019, ODEQ granted an NFA determination letter for the Chiloquin Texaco. Based on the issuance of an NFA, this facility is considered a historical REC. See Section 5.1 for further details.

5.3.3 Prior Reports

No prior environmental reports were provided for review.

6 Site Reconnaissance

The following is a summary of visual and/or physical observations of the property on the day of the site visit. As stated, the site is comprised one on-site building, building debris remnants of a former building, a vault, and vacant/undeveloped portion of the Subject Property. Representative photographs can be found in **Appendix A**.

6.1 Methodology and Limiting Conditions

Mr. Keith Ziobron, P.E. and Mr. Ashton Smithwick with Cardno conducted the site reconnaissance on April 13 2021. The site reconnaissance consisted of visual and/or physical observations of the property and improvements; adjoining sites as viewed from the property; and, the surrounding area based on visual observations made during the trip to and from the property.

No other limiting conditions were identified during the site reconnaissance, and all exterior and interior areas were inspected.

6.2 Hazardous Substance Use, Storage, and Disposal

Cardno did not observe any substance use, storage, or disposal at the Subject Property. However, between approximately 1930 to the 1960s, this facility was occupied by an auto repair garage and this time-frame predates regulations set forth by state regulations of the disposal of hazardous substances and other non-regulated chemicals. Therefore, improper storage and disposal practices may have occurred on the Subject Property (**REC #2**).

6.3 Underground Storage Tanks (USTs)

Cardno did not observe any USTs. However, Cardno identified a vent pipe attached to the west exterior wall of the on-site building (**REC #1**). Cardno believes this to be a ventilation pipe for an UST(s) on the Subject Property (See Photo 9). According to the 1931 Sanborn FIM, there is an area within the southwest corner labeled "Gas & Oil" which could be an indication for an on-site UST(s). Further, Cardno observed a potential vent pipe along the interior of the east wall. This vent pipe is a potential indicator for an on-site buried UST or heating oil tank (**REC #3**).

6.4 Aboveground Storage Tanks (ASTs)

Cardno did not observe any ASTs.

6.5 Other Petroleum Products

Cardno did not observe any other petroleum products.

6.6 Polychlorinated Biphenyls (PCBs)

Cardno observed the remains of three in-ground hydraulic lifts and one oil-changing pit within the onsite building (**REC #2**). No other information was provided regarding the lifts or oil-changing pit. Based on its potential to contain PCBs and/or other hydraulic fluids, it has potential to impact the soil, groundwater, and/or vapor at the Subject Property.

6.7 Unidentified Substance Containers

Cardno did not observe any unidentified substance containers.

6.8 Nonhazardous Solid Waste

Cardno observed a significant pile of wood chips within the on-site building. According to Mr. Charlie Case of the City of Chiloquin Public Works Department, the on-site building was utilized prior to 2000 for manufacturing wooden boxes and wood smoking chips for grills/barbeques. The leftover wooden chips are the remains of the Juniper wood products business.

Additionally, significant quantities of building debris are located along the north exterior wall from the previous building attachment. These materials have potential for asbestos-containing materials (ACM) and lead-based paint (LBP). Cardno estimates there is approximately 650 cubic yards of building debris that remains on the Subject Property. See Photos 2 for a general representation of site conditions.

6.9 Wastewater

Cardno did not observe evidence of wastewater generation at the Subject Property.

6.10 Waste Pits, Ponds and Lagoons

Cardno did not observe any pits, ponds, or lagoons on the Subject Property.

6.11 Drains and Sumps

Cardno did not observe any drains or sumps on the Subject Property.

6.12 Septic Systems

Cardno did not observe evidence of septic tank usage on the Subject Property.

6.13 Storm Water Management System

Cardno observed a stormwater drain near the southeast corner of the on-site building on West Chocktoot Street.

6.14 Wells

Cardno did not observe any monitoring or active drinking wells on the Subject Property.

7 Subsurface Vapor Migration

Hazardous gases (vapor) from subsurface sources, such as contaminated soil or groundwater can migrate into residential, commercial, and industrial buildings with any foundation type, including basements, crawlspaces, or slabs. According to EPA guidance, three conditions must exist for hazardous vapors to reach the interior of buildings from the subsurface environment underneath or near a building. First, a source of hazardous vapors must be present in the soil or in groundwater underneath or near a building. Second, vapors must form and have a pathway along which to migrate toward the building. Third, entry routes must exist for the vapors to enter the building, and driving forces must exist to draw the vapors into the building.

Cardno considered the nature and extent of on-site sources of potential subsurface vapor migration by evaluating the current and historical usage of the property, the construction type and history, the physical setting, and the potential sources of subsurface vapor migration through the review of regulatory agency database information that was summarized in Section 5.0.

Based on the evaluation of the known or suspected releases of hazardous substances or petroleum products, their distance from the property, all potential pathways separated by roads with underground utilities, and soil type, et al, are not determined to impact the Subject Property with the exception of the following:

- REC#1 Former on-site automobile fueling;
- **REC #2** On-site auto repair garage operations;
- **REC #3** Potential on-site UST or heating oil tank
- REC #4 Off-site printing; and
- **REC #5** Off-site dry-cleaning

8 Interviews

Cardno obtained completed interview questionnaire from the following persons:

- Rick Vaughn Tax Collector and Property Manager for Klamath County
- Teresa R. Foreman City Recorder for the City of Chiloquin
- Charlie Case City of Chiloquin Public Works
- Fire Chief Michael Cook Chiloquin Fire & Rescue

The completed All Appropriate Inquiry questionnaires, completed by Mr. Rick Vaughn and Ms. Teresa R. Foreman, are provided in **Appendix B.**

Ms. Teresa Foreman stated there is no purchase price for the property and is owned by Klamath County through tax foreclosure. Ms. Foreman indicated the on-site building was formerly utilized as a car dealership and garage. She also stated she assumes fuel and oil were stored and used as part of the business.

Mr. Rick Vaughn has been associated with the Subject Property for approximately two years. Mr. Vaughn states the property is approximately 0.51-acres and he believes the on-site building is approximately 12,316 sq. ft. He is not aware of the past uses of the property and that Klamath County obtained the property through tax foreclosure.

Mr. Charlie Case indicated the former Markwardt Brothers Garage was in operation from approximately the 1930s to the 1960s; a second-hand store in the 1970s; and Juniper wood products in the 1980s. Mr. Case stated the remains of the wood chips within the on-site building are from the Juniper wood products company that manufactured wooden boxes and wood chips for grills/barbeques. Mr. Case stated the southwest corner of the on-site building was utilized as a fueling stations between the 1930s to the 1950s. He also mentioned the roof of the former building attachment north of the on-site building had completely collapsed and the remainder of the building was demolished around 2015.

Cardno contacted Fire Chief Michael Cook of the Chiloquin Fire & Rescue Department in regards to any fires, spills, and/or incidents. Chief Cook stated there are no records on file for the Subject Property.

9 Additional Scope Items

During the course of this investigation, Cardno completed a comprehensive asbestos inspection on the former Markwardt Brothers Garage as depicted in **Figures 2-3**. A copy of this report will be provided under a separate cover and is included as **Appendix H.**

No other collection or investigation for the purpose of determining the possible presence of radon, mold, and/or any other potential contaminants requiring specialized testing procedures or sampling were conducted during this investigation. No assessment was conducted for the possible presence or absence of wetlands and no determination is offered with regard to the suitability of the subject site for development or for any other specific use or purpose.

Notwithstanding these limitations, the applicability of certain environmental issues which are not covered by ASTM standards are still germane to a wide array of properties. The following is a summary of non-scope issues identified at the property on the day of the site visit.

9.1 Asbestos Containing Materials

The inspection was performed on April 13, 2021 by Mr. Ashton Smithwick, an EPA accredited asbestos inspector, in accordance with the Asbestos Hazardous Emergency Response Act (AHERA) and Asbestos School Hazard Abatement Reauthorization Act (ASHARA).

In accordance with National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR 61 Subpart M, paragraph 145, all asbestos containing materials (ACMs) must be identified and removed prior to disturbance, either during a renovation or demolition. ACM is defined by OSHA as materials that contain greater than 1% asbestos fibers.

The asbestos inspection included a visual inspection of all accessible interior and exterior areas of the on-site buildings. This inspection was performed in accordance with AHERA and ASHARA protocols. Cardno made a reasonable attempt to visually identify all suspect materials or homogeneous areas (HAs). The interior and exterior of the buildings were identified, with the exception of the building roof due to the overall unsafe condition. Each HA was visually assessed for condition, friability, and quantity.

During the inspection, Cardno collected twenty-three (23) samples from eight (8) different HAs throughout interior/exterior of the on-site facility. All bulk samples were collected and stored in appropriate sample containers, labeled, and delivered to Eurofins EMLab P&K (EMLab) in Norcross, Georgia. AES analyzed the samples using Polarized Light Microscopy (PLM) via EPA Method 600/R-93/116. This laboratory is accredited by the National Institute of Standards of Technology (NIST), and is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP).

9.1.1 <u>Asbestos Results</u>

The following materials were identified as containing greater than 1% ACM:

- Interior white skim coat on plaster surfacing, totaling approximately 3,600 square feet (SF), located within the western most portions of the on-site building.
- Interior white texture and joint compound on drywall, totaling approximately 1000 SF, located within the western most portions of the on-site building.

 Interior white caulk, totaling approximately 50 linear feet (LF), located on interior west wall windows.

The following materials were not sampled and should be considered PACM:

• Exterior building debris from former attached north addition, totaling approximately 650 CY.

The north building addition was constructed around the same time as the main building, and the building debris appeared to have suspect materials. Therefore, the building debris should be considered asbestos containing until sampling by a licensed asbestos inspector indicates otherwise.

A more detailed summary of the inspection, identified ACM, and diagrams of samples and ACM locations will be provided under separate cover and is included as **Appendix H**. Photos of the identified ACM are included as **Appendix A**.

9.2 Lead-Based Paint

A limited lead-based paint (LBP) inspection was conducted on April 13, 2021 by Cardno's Mr. Ashton Smithwick. All testing was completed in accordance with applicable HUD, state, and federal regulations regarding LBP inspections. No previous LBP sampling information was provided by the client or the property owner.

The LBP testing was performed in general accordance with the inspection protocol in Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing. Painted surfaces were tested by collected paint chips of various painted surfaces throughout the interior and exterior of the buildings. LBP is defined by EPA as containing greater than 0.5% lead in painted materials.

During the inspection, Cardno collected 12 paint chips samples from unique locations throughout the interior/exterior of the on-site buildings.

The paint chip samples were collected into appropriate containers, labeled, and delivered to EMLab in Norcross, Georgia. The laboratory analyzed the samples using flame atomic absorption spectrometry (FAAS) via National Institute for Occupational Safety and Health (NIOSH) Method 7082. This laboratory is accredited by the NIST program, and is recognized under the NVLAP. A copy of the analytical results included the laboratory certification will be provided under a separate cover.

9.2.1 <u>Lead-based Paint Results</u>

In accordance with EPA, any paint containing 0.5% by weight of lead is categorized as containing lead. Based on the paint chip sampling results, the following painted surface tested positive for lead-based paint:

- Red paint on exterior concrete masonry unit (CMU), totaling approximately 3,600 SF, located on the exterior east, south, and west walls.
- Tan/gray paint on interior ceiling, totaling approximately 1,200 SF, located on wood board ceiling on the southwest corner of the building.

A more detailed summary of the inspection, identified LBP, and diagrams of sample LBP locations will be provided under a separate cover and included as **Appendix H**. Photos of the identified LPB is included as **Appendix A**.

9.3 Additional Non-ASTM Considerations

No other collection or any investigation for the purpose of determining the possible presence of radon, mold, and/or any other potential contaminants requiring specialized testing procedures or sampling were conducted during this investigation. No assessment was conducted for the possible presence or absence of wetlands and no determination is offered with regard to the suitability of the subject site for development or for any other specific use or purpose.

10 Findings and Recommendations

Cardno has completed a Phase I Environmental Site Assessment (ESA) of the former Markwardt Brothers Garage property located northeast of the North 1st Avenue and West Chocktoot intersection in downtown Chiloquin, Klamath County, Oregon (**Figure 1**). The property boundary is shown on **Figure 2** and the tax parcel map is provided in **Figure 3**.

Photos of the Subject Property and surrounding properties taken during the site visit are provided in **Appendix A.** The surrounding land use map is provided as **Figure 4**. This assessment was performed under and funded by the City of Chiloquin Business of Oregon Brownfield Grant in general accordance with 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries and ASTM Standard Practices E1527-13 for Environmental Site Assessments.

This assessment was performed to satisfy the requirements of City of Chiloquin (Client) with respect to potential environmental impairment and liabilities associated with the property due to contamination by hazardous substances, controlled substances, or petroleum products on or near the site.

10.1 Findings

Phase I ESA investigations seek to identify known or suspect RECs, HRECs, CRECs, and de minimis conditions. De minimis conditions are those that are judged to not present a material risk of harm to health or the environment.

This assessment has identified several RECs in connection with the Subject Property, as shown in **Figure 5**, consisting of the following:

On-Site REC

1. According to the 1931 Sanborn FIM, the building was used as an auto repair garage and an area with-in the on-site building, at the southwest corner, is labeled "Gas & Oil". Further, during site reconnaissance, Cardno personnel identified a potential UST vent pipe attached to the west interior wall of the on-site building. Therefore, there is potential for a UST(s) to exist on the property and said tank may have impacted the soil, groundwater, and/or vapor at the Subject Property.

2. The remains of three in-ground hydraulic lifts and one oil-changing pit were observed in the building. According to the 1931 Sanborn Fire Insurance Map (FIM), the on-site building is labeled as being an auto repair/garage facility. Additionally, based on the age of the building, this time-frame predates the regulation of the storage/disposal of hazardous substances such as used oil and other non-regulated automobile chemicals. Based on the age and duration of use, the in-ground lifts and unknown chemical management and disposal practices associated with historic operations, site soil, groundwater, and/or vapor may have been impacted by historic site operations.

3. During site reconnaissance, Cardno identified a potential vent pipe in the interior of the building along the eastern wall. This could be an indication for a UST and/or heating oil tank to exist on the Subject Property. Based on the age and duration of the former use of the building, there is potential for a UST/heating oil tank on the property that may have impacted the soil, groundwater, and/or vapor at the Subject Property.

Off-Site RECs

4. According to the 1931 Sanborn FIM, a Printing facility is located approximately 80 feet to the east. The length of operation for this facility is unknown. There is potential for a release from this facility.

5. According to the 1931 Sanborn FIM, a Cleaning facility is located approximately 120 feet to the southeast. The length of operation for this facility is unknown. There is a potential for a release from this facility.

Off-site HRECs

1. According to Oregon Department of Environmental Quality (ODEQ) records, the former Chiloquin Texaco, located west and approximately 45 feet away, indicate that four USTs were installed pre-1989 which predates UST registration. These tanks were removed from the property in July 1994, and three new registered gasoline USTs were installed in the UST tank excavation in August 1994. The new tanks were subsequently removed in 2017. Post-excavation confirmation sampling conducted in 2017 and soil sampling conducted in June 2018 indicate that the residual petroleum in soil are low. On July 22, 2019, ODEQ granted an NFA determination letter for the Chiloquin Texaco site. Based on the issuance of an NFA, and given the assumed ground waterflow direction away from the subject site, this facility is considered a historical REC.

Asbestos-Containing Materials

Asbestos containing materials (ACMs) were identified throughout the interior of the building including:

- Interior white skim coat on plaster surfacing, totaling approximately 3,600 square feet (SF), located within the western most portions of the on-site building.
- Interior white texture and joint compound on drywall, totaling approximately 1000 SF, located within the western most portions of the on-site building.
- Interior white caulk, totaling approximately 50 linear feet (LF), located on interior west wall windows.

Overall, given the state of the buildings, most of these materials were in good to fair condition. Therefore, the identified ACM has a low probability of disturbance during ordinary use. Prior to any renovation or demolition that may cause the ACM to become friable, the material should be removed or abated by a qualified asbestos abatement contractor. A more detailed summary of the inspection, identified ACM, and diagram of samples and ACM location will be provided under a separate cover and included as **Appendix H**.

The following suspect building materials were not sampled and should be considered presumed asbestos containing materials (PACM):

• Exterior building debris from former attached north addition, totaling approximately 650 cubic yards (CY).

The building to the north was constructed around the same time as the remaining building, and the building debris appeared to have suspect materials. Therefore, the building debris/rubble should be considered asbestos containing until sampling by a licensed asbestos inspector indicates otherwise.

Lead-Based Paint

Lead-based paint (LBP) was identified on various painted surfaces throughout the interior and exterior of the building in various tenant spaces including:

• Red paint on exterior concrete masonry unit (CMU), totaling approximately 3,600 SF, located on the exterior east, south, and west walls.

• Tan/gray paint on interior ceiling, totaling approximately 1,200 SF, located on wood board ceiling on the southwest corner of the building.

Most of the identified painted surfaces were in poor condition, with peeling and deterioration noted. As the buildings are not considered to be child-occupied facilities, the identified LBP can be left intact unless disturbed during renovation or demolition. A more detailed summary of the inspection, identified LBP, and diagram of samples and LBP locations will be provided under a separate cover and included as **Appendix H**.

10.2 Recommendations

Cardno makes the following recommendations:

- A geophysical survey should be performed in the vicinity of the vent pipes in order to determine if USTs are present. If they are found to be present, soil and ground war sampling should be performed adjacent to the tanks.
- Soil boings or test pits should install and soil samples collected and analyzed to evaluate impacts from the identified on and off-site RECs.
- A limited ground water monitoring network should be installed and sampled to evaluate potential ground water impacts and the potential for vapor intrusion.
- The exterior building debris/rubble should be considered PACM and treated as ACM until further sampling by a licensed asbestos inspector indicates otherwise. In addition to ACM testing, the debris should be characterized relate to the potential presence of toxic levels of lead. Finally, After the debris is removed, the need for additional site characterization should be considered.
- Prior to any renovation or demolition that may cause the ACM to become friable, the material should be removed or abated by a qualified asbestos abatement contractor. If the ACM is to be left in place, an Operation and Maintenance (O&M) plan should be implemented regarding the handling of the identified ACM.
- The identified lead-based paint appeared to be overall in fair to poor condition. The on-site building is not considered a child-occupied facility, the identified LBP can be left intact unless disturbed during renovation or demolition. If the LBP is to be disturbed during renovation or demolition, depending on the extent of the disturbance, the LBP can be encapsulated, enclosed, or abated. All activity that disturbs LBP should be conducted by a licensed LBP renovation, repair, or paint (RRP) firm or a qualified LBP abatement contractor.

If the property is to be renovated or demolished, due to the presence of lead on various painted surfaces, toxicity characteristic leachate procedure (TCLP) analysis for lead should be conducted on any construction debris to determine if the material should be characterized as a hazardous waste prior to disposal.

11 References

- EDR. Radius Report, Order Number 6438323.2s
- EDR. Aerial Photo Decade Package, Order Number 6438323.8
- EDR. City Directories, Order Number 6438323.5
- EDR. Historical Topographic Maps, Order Number 6438323.4
- EDR. Sanborn Fire Insurance Maps, Order Number 6438323.3

12 Qualifications/Signatures of Environmental Professional(s)

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in 40 CFR Part 312.10. I certify that this report has been prepared in general accordance with 40 CFR Part 312 and ASTM E 1527-13 Standard Practice for Environmental Site Assessments.

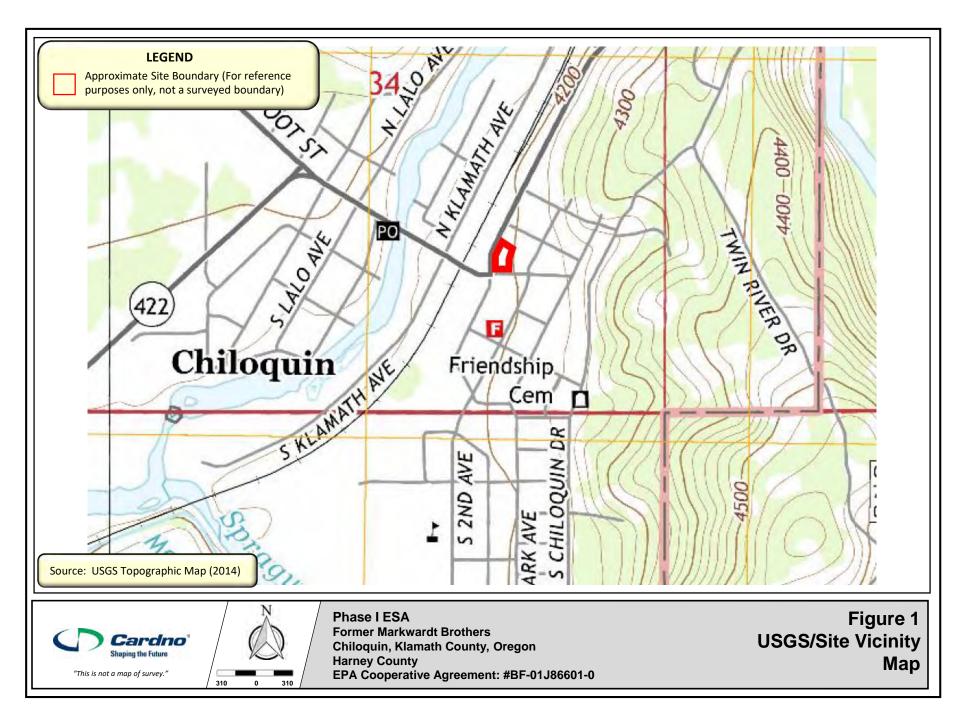
I further certify that, in my professional judgment, this report meets the requirements of 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries. I have the specific qualifications based on training, experience and registration to perform and/or assist in the assessment of a property of the nature, history and setting of the Subject Property.

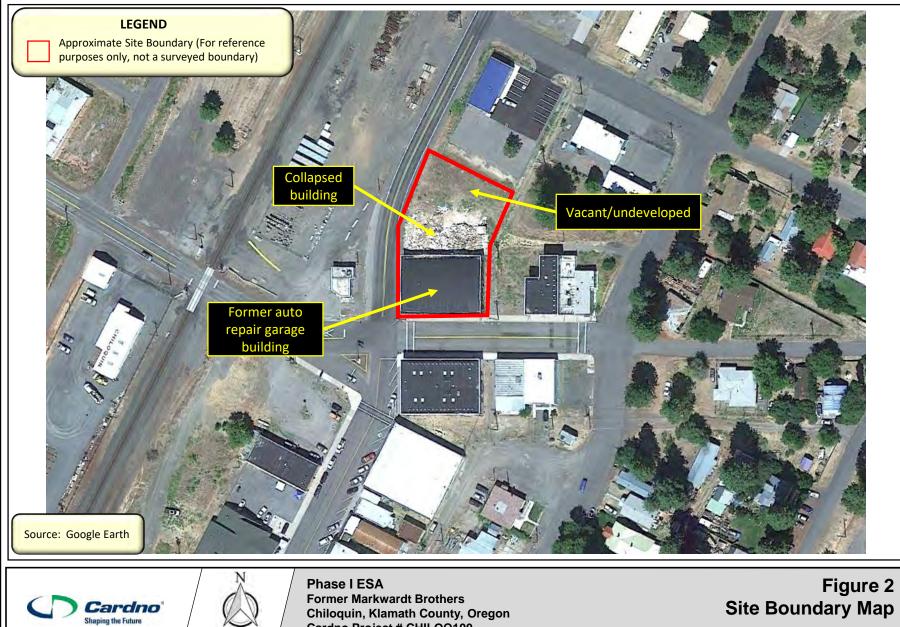
for Cardno

Keith Źiobron, P.E. Branch Manager

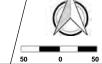
Date: May 17, 2020

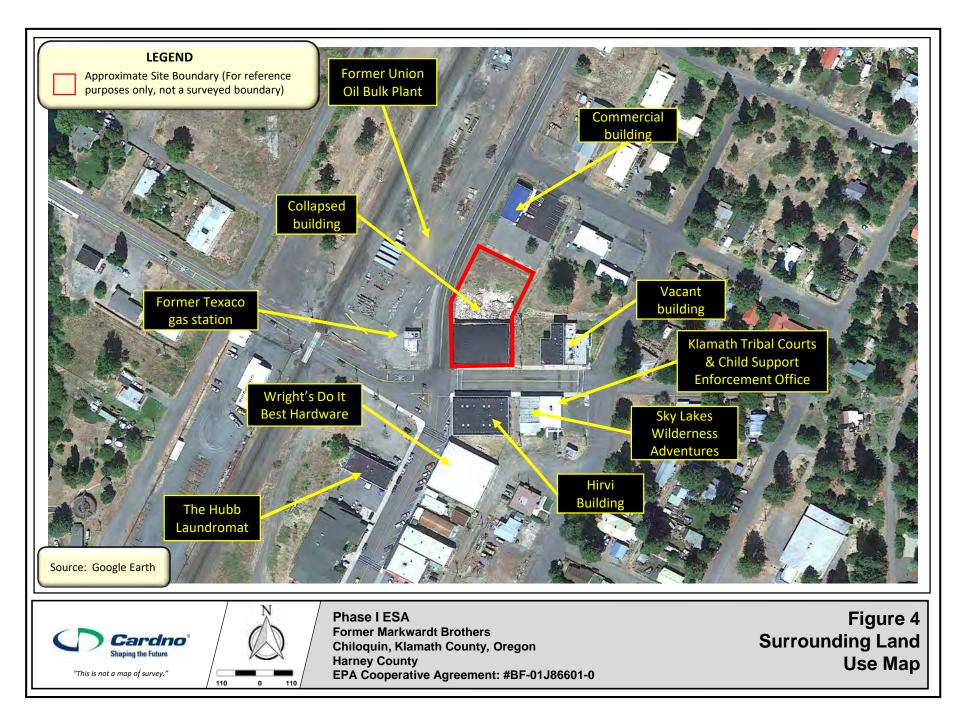
I declare this "*Phase I Environmental Site Assessment*" Report meets or exceeds Cardno's standards for editorial content, technical accuracy, and quality assurance verification. All data and calculations presented herein have been checked for accuracy and the basis for all conclusions and recommendations have been described.

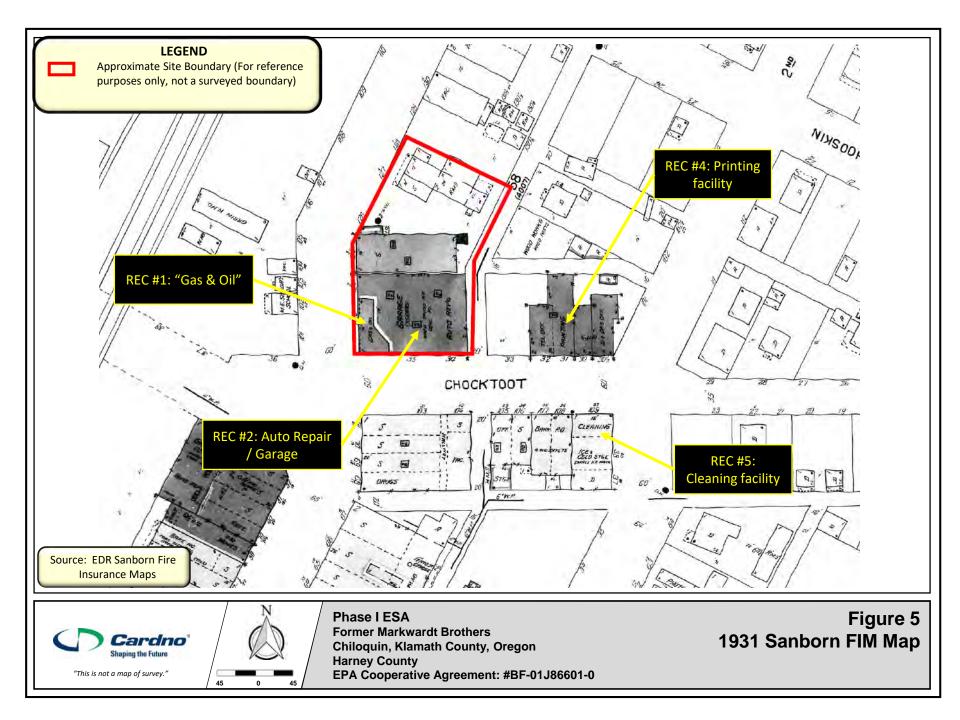

for Cardno

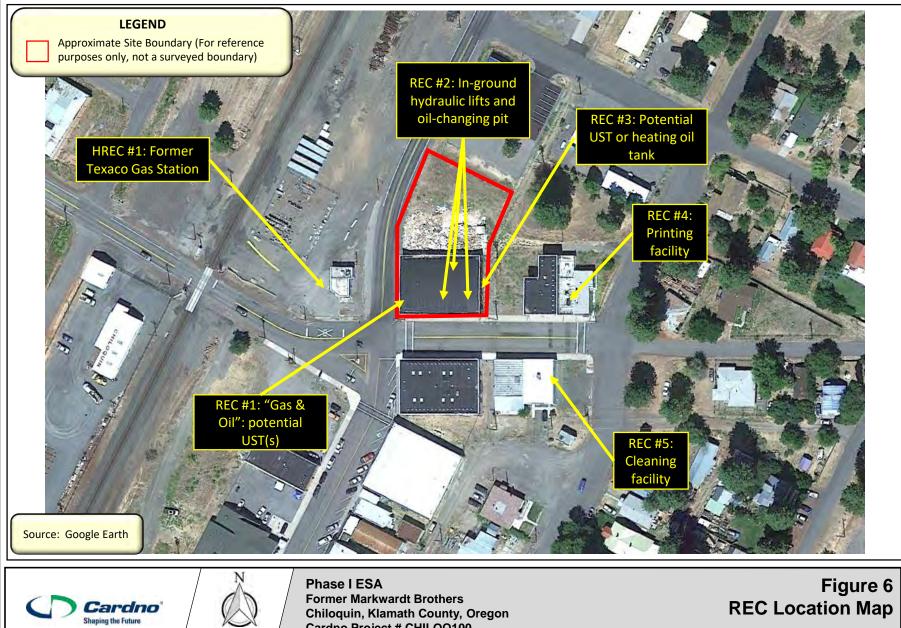

W. Ashton Smithwick Geologist I

Date: May 17, 2021


Figures




"This is not a map of survey."



Cardno Project # CHILOQ100

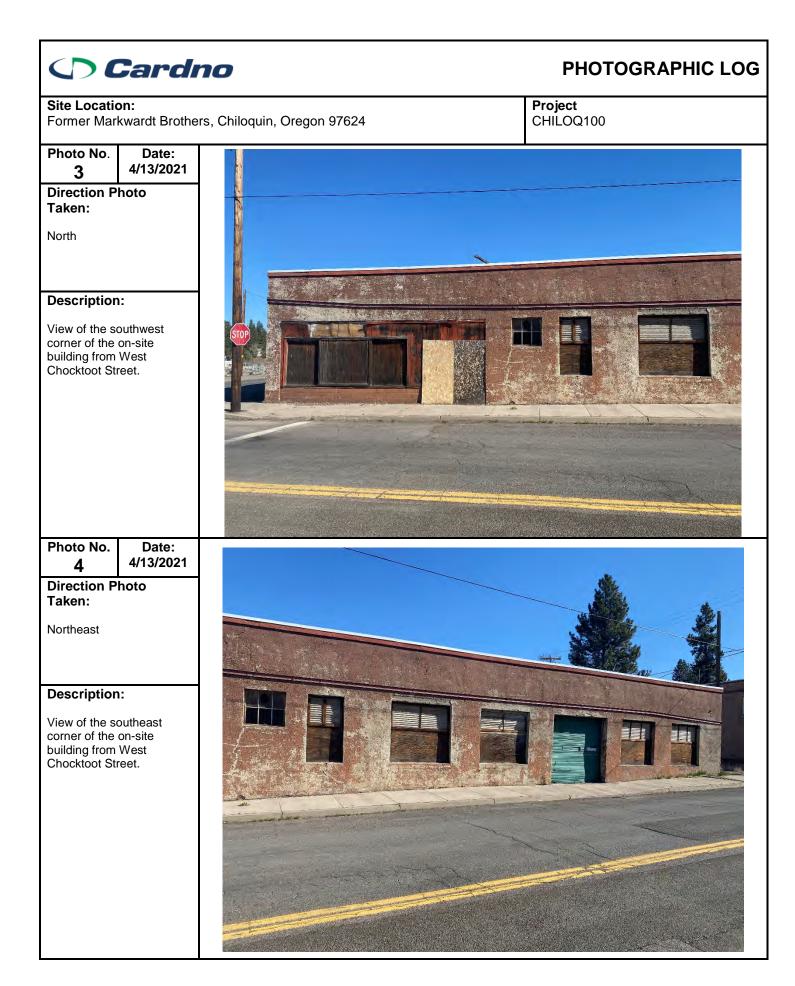
"This is not a map of survey."

50 50 Cardno Project # CHILOQ100

Appendix A Photographic Log

🔿 Cardno

PHOTOGRAPHIC LOG


Site Location:

Former Markwardt Brothers, Chiloquin, Oregon 97624

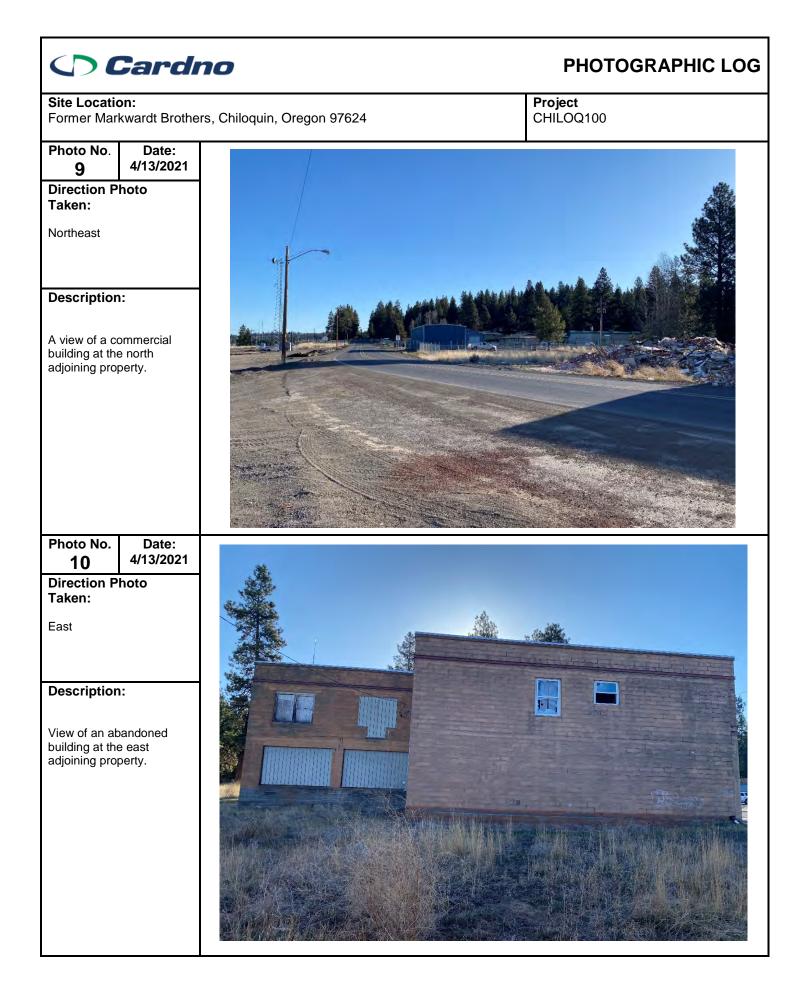
Cardno

PHOTOGRAPHIC LOG

Site Location:

East

Former Markwardt Brothers, Chiloquin, Oregon 97624

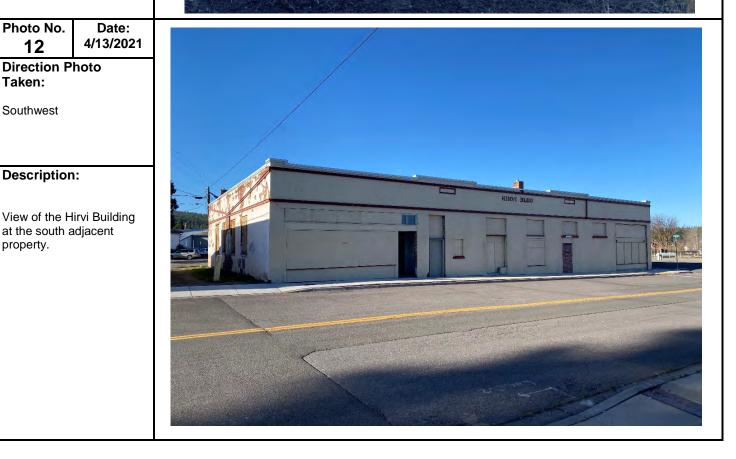

Cardno PH

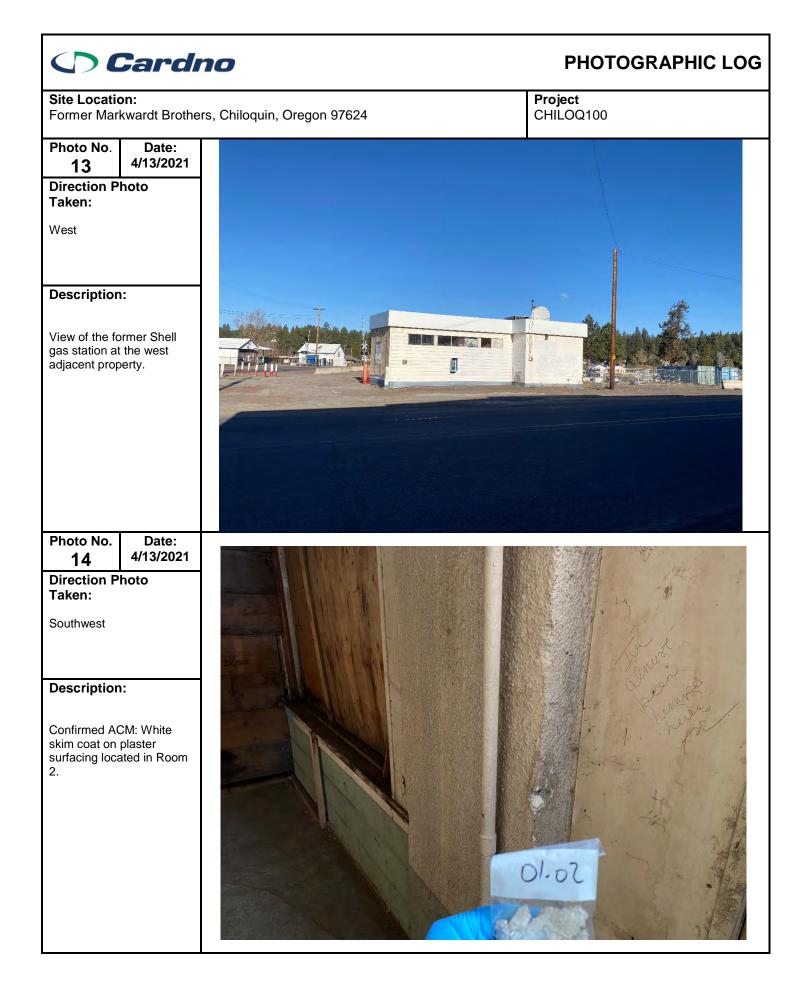
PHOTOGRAPHIC LOG

Site Location:

Former Markwardt Brothers, Chiloquin, Oregon 97624

Cardno **PHOTOGRAPHIC LOG** Project CHILOQ100 Site Location: Former Markwardt Brothers, Chiloquin, Oregon 97624 Photo No. Date: 4/13/2021 11 **Direction Photo** Taken: Southeast **Description:** A view of Sky Lakes Wilderness Adventures (right) and Klamath Tribal Courts & Child Support Enforcement Office (left) at the southeast adjacent property.



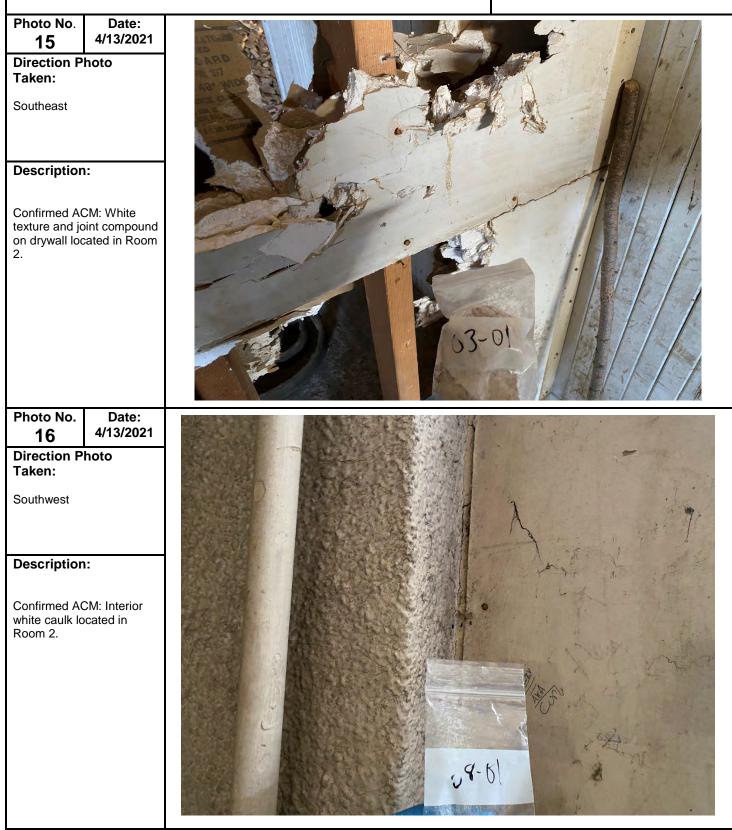

Photo No.

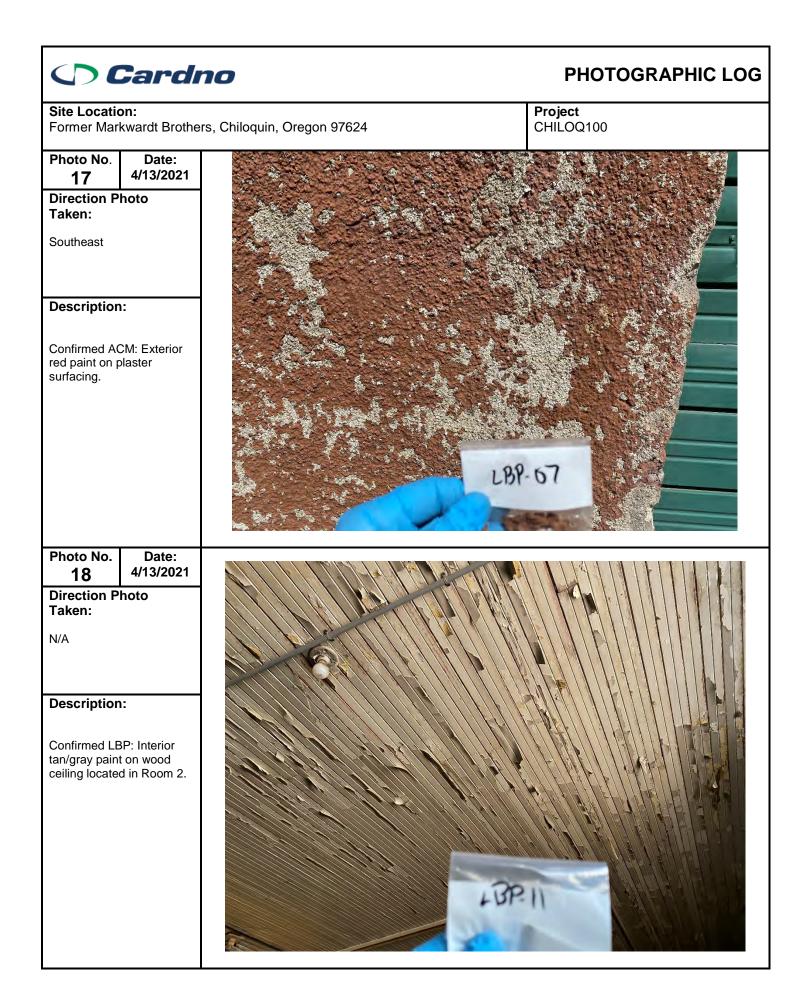
12

Taken:

Southwest

property.




Cardno Cardno

PHOTOGRAPHIC LOG

Site Location:

Former Markwardt Brothers, Chiloquin, Oregon 97624

Asbestos & Lead-Based Paint Survey

Former Markwardt Brothers Garage North 1st Avenue and West Chocktoot Street Chiloquin, Klamath County, Oregon

May 17, 2021

Prepared for: City of Chiloquin, Oregon

Asbestos & Lead-Based Paint Survey Report

Prepared for: Ms. Teresa R. Foreman City Recorder for the City of Chiloquin City of Chiloquin, Oregon 127 South 1st Avenue Chiloquin, Oregon 97624

Project Name: Asbestos & Lead-Based Paint Survey Former Markwardt Brothers Garage North 1st Avenue and West Chocktoot Street Chiloquin, Klamath County, Oregon

Cardno Project #: CHILOQ100

Date: May 17, 2021

Table of Contents

Exec	utive \$	Summary	1
1	Introd	duction	3
	1.1	Purpose	3
	1.2	Site History	3
	1.3	Property Descriptions	3
	1.4	Building Description	3
	1.5	Previous Assessments	3
	1.6	Limitations / Exceptions of Assessment	4
	1.7	Special Terms and Conditions (User Reliance)	4
2	Sampling Activities		
	2.1	Asbestos Survey	5
	2.2	Limited Lead-Based Paint Survey	6
3	Analytical Results		
	3.1	Asbestos-Containing Materials	7
4	Conc	Iusions/Recommendations	8

Figures

1	USGS/Site	Vicinity	Мар
---	-----------	----------	-----

- 2 Site Boundary Map
- 3 Building Diagram with ACM/LBP Sample Locations

Tables

- 1 Summary of Bulk Sample Analysis and Assessment
- 2 Summary of Paint Chip Analysis and Assessment

Appendices

- A Photographic Log
- B Laboratory Analytical Reports
- C Inspector Accreditations

Executive Summary

Cardno has completed a comprehensive Asbestos and limited Lead-Based Paint survey of the former Markwardt Brothers Garage located northeast of the North 1st Avenue and West Chocktoot Street intersection in Chiloquin, Oregon. The study property is herein referred to as "the Subject Site/Property" or "the Site" (as generally depicted in **Figures 1 and 2**) and consists of approximately 0.55-acres developed with one commercial structure. The Subject Property and its on-site structure are currently owned by Klamath County. The Subject Site is currently being evaluated for redevelopment.

The Subject Property is located in the downtown area of Chiloquin, Oregon. Historically, the surrounding area has been commercially and residentially developed since the 1920s. The Subject Property is bordered to the north by a commercial property; to the east and south by additional commercial properties; and to the west by a former gas station.

This assessment was performed to satisfy the requirements of the Client (City of Chiloquin) and their assigns (including the prospective purchaser) with respect to potential environmental impairment and liabilities associated with the property due to contamination by hazardous substances. This assessment was completed under the City of Chiloquin's Business of Oregon Brownfield Grant for the site.

In summary, the results of this survey are stated below.

<u>Asbestos:</u> Comparison of the laboratory analytical results to the Occupational Safety and Health Administration's (OSHA) for building materials containing >1% asbestos revealed:

- Interior white skim coat on plaster surfacing, totaling approximately 3,700 square feet (SF), located within the western most portions of the on-site building.
- Interior white texture and joint compound on drywall, totaling approximately 1000 SF, located within the western most portions of the on-site building.
- Interior white caulk, totaling approximately 50linear feet (LF), located on interior west wall windows.

For the purposes of demolition, the ACMs identified during this inspection are considered RACM (regulated ACM). RACM consists of friable ACM, Category I non-friable ACM that has become friable, Category I non-friable ACM that is subjected to sanding, grinding, cutting or abrading, or Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of demolition or renovation operations.

The following suspect building materials were not sampled and should be considered presumed asbestos containing materials (PACM):

• Exterior building debris from former attached north addition, totaling approximately 650 cubic yards (CY).

The north building addition was constructed around the same time as the main building, and the building debris appeared to have suspect materials. Therefore, the building debris should be considered asbestos containing until sampling by a licensed asbestos inspector indicates otherwise.

Lead-Based Paint: Comparison of the laboratory analytical results to the Environmental Protection Agency (EPA) and Housing and Urban Development (HUD) for paint chips identified the following materials as lead-based paint:

- Red paint on exterior concrete masonry unit (CMU), totaling approximately 3,600 SF, located on the exterior east, south, and west walls.
- Tan/gray paint on interior ceiling, totaling approximately 1,200 SF, located on wood board ceiling on the southwest corner of the building.

Based on the results of the Phase II ESA, Cardno recommends:

- The identified ACMs appears to be in good to fair condition. Prior to any renovation or demolition
 that may cause the ACM to become friable, these materials should be removed or abated by a
 qualified asbestos abatement contractor in compliance with federal, state, and local regulations.
 If the ACM is to be left in place, an Operation and Maintenance (O&M) plan should be
 implemented regarding the handling of the identified ACM.
- The exterior building debris should be considered PACM and treated as ACM until further sampling by a licensed asbestos inspector indicates otherwise.
- The identified lead-based paint appeared to be overall in good to fair condition. The building is not considered a child-occupied facility, the identified LBP can be left intact unless disturbed during renovation or demolition.
- For the purposes of demolition or renovation, if the paint is well adhered to the substrate and will not be cut, sanded, or abraded by mechanical means for sizing than it can be disposed of along with the construction and demolition debris. Loose and flaking lead-containing paint should be removed and containerized as a waste stream for disposal purposes. Once all of the paint materials are collected for disposal, a waste profile sample should be collected to determine if the waste is hazardous. Hazardous materials must be properly containerized, transported, and disposed of in accordance with Resource Conservation Recovery Act (RCRA) standards and regulations.

1 Introduction

1.1 Purpose

This assessment was completed under the City of Chiloquin's Business of Oregon Brownfield Grant for the subject property. The Client (City of Chiloquin) intends to either renovate or demolish the building.

1.2 Site History

The Subject Site historically was identified as the Markwardt Brothers Garage from the 1930s to the 1960s; a second-hand store in the 1970s; and Juniper wood products processing facility in the 1980s. According to the Public Works Department, the building has been vacant since the late 1990s. A building attachment formerly occupied the property north of the on-site building. However, the roof of the former building collapsed and the remainder of the building was demolished in 2015. The northern portion of the property was developed with one structure in the 1930s but was razed and vacant since.

1.3 Property Descriptions

The Subject Site is comprised of one parcel, currently owned by the Klamath County, located in the center of downtown Chiloquin, Oregon as shown on **Figures 2 and 3**. The Subject Property is bound by an auto repair facility to the north, undeveloped/vacant land to the northeast, multi-commercial facilities to the east, Sky Lakes Wilderness Adventures and Klamath Tribal Courts & Child Support Enforcement Office to the southeast, the Hirvi building to the south, a former gas station to the west, and the former Union Oil Bulk Plant property to the northwest.

According to the Klamath County Tax Assessor's website, the Site encompasses two parcels totaling approximately 0.55 acres. The Subject Property currently is developed with a single-story commercial building of concrete block and brick facade construction. A former building addition has been previously demolished and the remains of the building materials remain with the exception of a vault. The building is currently vacant and in the care of Klamath County.

1.4 Building Description

During the asbestos and LBP survey, Cardno noted the construction materials utilized for the interior/exterior of the on-site building. The exterior walls of the building were concrete masonry units (CMU) with brick façade and the roof appears to be newly renovated thick plastic over wooden trusses.

The interior walls throughout the building consisted of a combination of CMU and CMU overlain with drywall and/or plaster/stucco. Throughout the interior of the building the floor consists of bare concrete slab. No basement or crawlspace was observed during the survey.

1.5 **Previous Assessments**

Cardno is also completing a Phase I ESA in concert with this asbestos and lead-based paint survey. This Phase I ESA investigation identified a potential UST(s), auto repair/garage uses, potential mishandling/disposal of chemicals on the Subject Property as well as a Recognized Environmental conditions (RECs) associated with former off-site printing and dry-cleaning facilities. The Phase I ESA report will be submitted to the client under separate cover. However, no prior environmental reports were provided for review.

1.6 Limitations / Exceptions of Assessment

A comprehensive asbestos and limited LBP survey was completed by Cardno to identify potential ACM and LBP. Any suspect building materials not sampled and analyzed for asbestos during this investigation should be treated as presumed asbestos containing materials (PACM) until further sampling by a certified inspector indicates otherwise. Any suspect LBP not sampled and analyzed for lead during this investigation should be treated as LBP until further sampling by a certified inspector indicates otherwise. Further, it should be noted that the collection and analysis of roofing materials was not included in the scope of this project.

No other warranty is expressed or implied.

1.7 Special Terms and Conditions (User Reliance)

This report is for the use and benefit of, and may be relied upon by the entity(s) identified in the Executive Summary of this report as the Client, as well as any of its affiliates and their respective successors and assigns, in connection with a commercial real estate transaction involving the property, and in accordance with the terms and conditions in place between Cardno and the Client for this project. Any third party agrees by accepting this report that any use or reliance on this report shall be limited by the exceptions and limitations in this report, and with the acknowledgment that actual site conditions may change with time, and that hidden conditions may exist at the property that were not discovered within the authorized scope of the assessment. Any use by or distribution of this report to third parties, without the express written consent of Cardno is at the sole risk and expense of such third party.

Cardno makes no other representation to any third party except that it has used the degree of care and skill ordinarily exercised by environmental consultants in the preparation of the report and in the assembling of data and information related thereto. No other warranties are made to any third party, either expressed or implied.

2 Sampling Activities

2.1 Asbestos Survey

A comprehensive asbestos survey was conducted on April 13, 2021 by Cardno's Mr. Ashton Smithwick, a licensed and accredited asbestos inspector, in accordance with the Asbestos Hazardous Emergency Response Act (AHERA) and Asbestos School Hazard Abatement Reauthorization Act (ASHARA). Mr. Smithwick was assisted by Cardno's Keith Ziobron, P.E. Mr. Smithwick's accreditation certificate is included as **Appendix C**.

In accordance with National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR 61-Subpart M, paragraph 145, all asbestos containing materials (ACMs) must be identified and removed prior to disturbance, either during a renovation or demolition. ACM is defined by OSHA as materials that contain greater than 1% asbestos fibers.

The ACM survey included a visual survey of all accessible interior/exterior areas of the on-site building. Destructive testing was performed to verify the existence and extent of ACM in all building materials. The roof and exterior were also included during this survey. This survey was performed in accordance with AHERA and NESHAP protocols.

All suspect materials, or homogeneous areas (HAs) were visually identified. Each HA was visually assess for condition, friability, and quantity. All identified ACMs were classified by their category as denoted by EPA NESHAP and OSHA. These categories include:

- Thermal System Insulation (TSI) insulation typically over pipes, fittings, elbows, boilers, tanks, ducts, etc.
- Surfacing material material that is sprayed, troweled-on, or otherwise applied to surfaces.
- Miscellaneous All other ACMs
- Friable ACM that can be crumbled pulverized or reduced to a powder by hand pressure when dry
- Category I Non-Friable ACM consisting of packing material, gaskets, resilient floor covering, and asphalt roofing products
- Category II Non-Friable All ACM that is not listed in Category I Non-Friable ACM
- Presumed Asbestos Containing Material (PACM) all potential ACM not analytically analyzed

Each HA was visually assessed for condition, friability, and quantity. A summary of the bulk samples collected is included as **Table 1** and sample locations are depicted on **Figure 3**.

During the survey, Cardno collected 23 samples from the former Markwardt Brothers Garage building. All bulk samples were collected and stored in appropriate sample containers, labeled, and delivered to Eurofins EMLab P&K (EMLab) in Norcross, Georgia. EMLab analyzed all samples using Polarized Light Microscopy (PLM) via EPA Method 600/R-93/116. This laboratory is accredited by the National Institute of Standards of Technology (NIST), and is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP). A copy of the analytical results including the laboratory certification is included in **Attachment B**.

2.2 Limited Lead-Based Paint Survey

A limited LBP survey was conducted on April 13, 2020 by Cardno's Mr. Ashton Smithwick, an EPAaccredited LBP inspector. Mr. Smithwick was assisted by Cardno's Keith Ziobron, P.E. All testing was completed in accordance with applicable HUD, state, and federal regulations regarding LBP surveys. No previous LBP sampling information was provided by the client or the property owner.

The LBP testing was performed in accordance with the survey protocol in Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing. Painted surfaces were tested by collected paint chips of various painted surfaces throughout the interior and exterior of the building. The roof and exterior were not included during this survey. LBP is defined by EPA as containing greater than 0.5% lead in painted materials.

During the survey, Cardno collected 12 paint chips samples from unique locations throughout the interior and exterior of the on-site building. A summary of all paint chip samples collected is included as **Table 2** and sample locations are depicted on **Figure 3**.

The paint chip samples were transferred into appropriate containers, labeled, and shipped to EMLab in Norcross, Georgia. The laboratory analyzed the samples using flame atomic absorption spectrometry (FAAS) via National Institute for Occupational Safety and Health (NIOSH) Method 7082. This laboratory is accredited by the NIST program, and is recognized under the NVLAP. A copy of the analytical results included the laboratory certification is included in **Appendix B**.

3 Analytical Results

3.1 Asbestos-Containing Materials

- Interior white skim coat on plaster surfacing, totaling approximately 3,600 square feet (SF), located within the western most portions of the on-site building.
- Interior white texture and joint compound on drywall, totaling approximately 800 SF, located within the western most portions of the on-site building.
- Interior white caulk, totaling approximately 30 linear feet (LF), located on interior west wall windows.

The interior skim coat identified totaled approximately 3,600 SF and was located within the western most portions of the on-site building. This material was in fair condition and considered a friable surfacing material.

The texture and joint compound on drywall totaled approximately 800 SF and was located in Rooms 2 and 3. This material was in fair condition and considered a miscellaneous Category I non-friable material.

The interior white caulk totaled approximately 30 LF and was located in Room 3. This material was in good condition and considered a miscellaneous Category II non-friable material.

The following materials were not sampled and should be considered PACM:

• Exterior building debris from former attached north addition, totaling approximately 650 CY.

The north building addition was constructed around the same time as the main building, and the building debris appeared to have suspect materials. Therefore, the building debris should be considered asbestos containing until sampling by a licensed asbestos inspector indicates otherwise.

Photos of some of the identified ACMs are included as Attachment A.

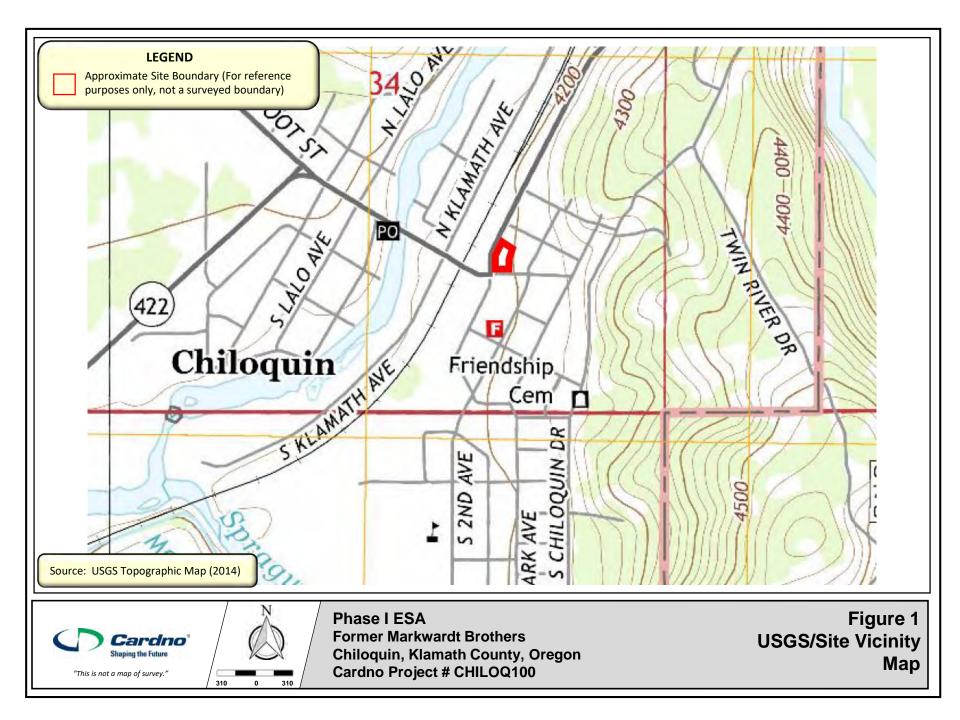
The laboratory report is included as Attachment B with results summarized in Table 1.

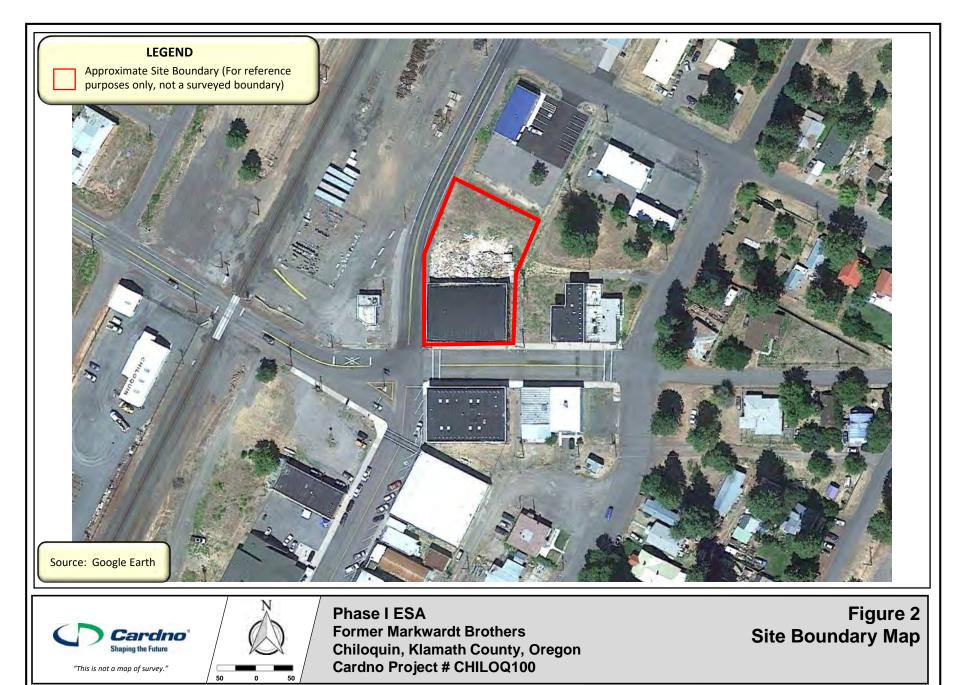
3.2 Lead-Based Paint

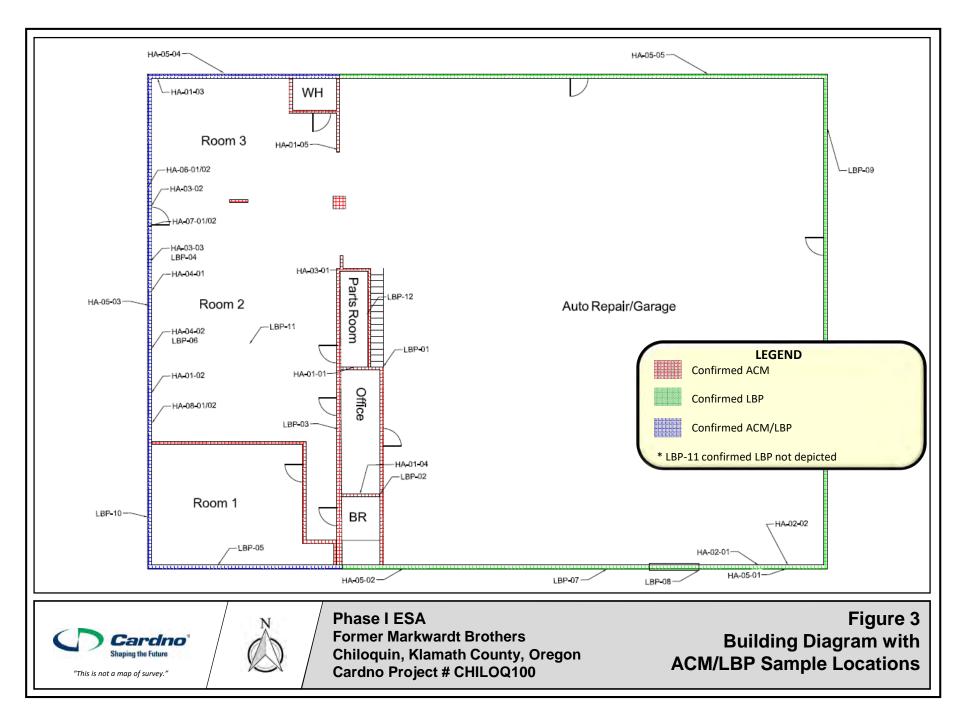
In accordance with EPA, any paint containing 0.5% by weight of lead is categorized as containing lead. Based on the paint chip sampling results, the following painted surface tested positive for lead-based paint:

- Red paint on CMU on the south exterior wall, totaling approximately 3,600 SF.
- Tan/gray paint on wood on the Room 3 ceiling, totaling approximately 1,200 SF.

Photos of some of the identified LBPs are included as **Attachment A**. The laboratory report is included as **Appendix B** with results summarized in **Table 2**.


4 Conclusions/Recommendations


Based on the results of this Phase II ESA:


- The identified ACMs appears to be in good to fair condition. Prior to any renovation or demolition
 that may cause the ACM to become friable, these materials should be removed or abated by a
 qualified asbestos abatement contractor in compliance with federal, state, and local regulations.
 If the ACM is to be left in place, an O&M plan should be implemented regarding the handling of
 the identified ACM.
- The exterior building debris should be considered PACM and treated as ACM until further sampling by a licensed asbestos inspector indicates otherwise.
- The identified lead-based paint appeared to be overall in good to fair condition. The building is not considered a child-occupied facility, the identified LBP can be left intact unless disturbed during renovation or demolition.
- For the purposes of demolition or renovation, if the paint is well adhered to the substrate and will
 not be cut, sanded, or abraded by mechanical means for sizing than it can be disposed of along
 with the construction and demolition debris. Loose and flaking lead-containing paint should be
 removed and containerized as a waste stream for disposal purposes. Once all of the paint
 materials are collected for disposal, a waste profile sample should be collected to determine if
 the waste is hazardous. Hazardous materials must be properly containerized, transported, and
 disposed of in accordance with RCRA standards and regulations.

Figures

Tables

TABLE 1: SUMMARY OF BULK SAMPLE ANALYSIS AND ASSESSMENT
FACILITY NAME: FORMER MARKWARDT BROTHERS GARAGE
CHILOQUIN, OREGON

Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (white skim coat) Interior plaster surfacing (white plaster) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster) Window glazing, gray Window glazing, gray Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Joint Compound) Drywall (Joint Compound)	Parts room 2 Room 2 Office Office Room 3 Auto repair/Garage Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD 2% CH NAD 2% CH NAD NAD NAD 2% CH NAD 2% CH NAD 2% CH	N/A 3,600 SF* N/A 3,600 SF* N/A N/A N/A 800 SF** N/A 800 SF** N/A	N/A SM N/A SM N/A N/A N/A N/A Misc. Cat 1 N/A N/A	NF F NF F NF NF NF NF NF NF NF NF	Good Good Good Good Good Good Fair Fair
skim coat) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (off-white skim coat) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster/gray debris) Window glazing, gray Window glazing, gray Unywall (Texture) Drywall (Cream tape) Drywall (Cream tape) Drywall (With brown paper) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape)	Room 3 Office Office Room 3 Auto repair/Garage Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD 2% CH NAD NAD NAD 2% CH NAD 2% CH NAD	N/A 3,600 SF* N/A N/A N/A 800 SF** N/A 800 SF** N/A	N/A SM N/A N/A N/A Misc. Cat 1 N/A Misc. Cat 1 N/A	NF F NF NF NF NF NF	Good Good Good Good Good Fair Fair
Daster) Interior plaster surfacing (white skim coat) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster/gray debris) Window glazing, gray Window glazing, gray Drywall (Texture) Drywall (Joint Compound) Drywall (With brown paper) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Cream tape) Drywall (Compound) Drywall (Compound) Drywall (With brown paper)	Office Office Room 3 Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	2% CH NAD NAD NAD 2% CH NAD 2% CH NAD	3,600 SF* N/A N/A N/A 800 SF** N/A 800 SF** N/A	SM N/A N/A N/A Misc. Cat 1 N/A Misc. Cat 1	F NF NF NF NF NF NF	Good Good Good Good Fair Fair
skim coat) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster) Interior plaster surfacing (Off-white plaster/gray debris) Window glazing, gray Window glazing, gray Undow glazing, gray Drywall (Texture) Drywall (Joint Compound) Drywall (With brown paper) Drywall (Cream tape) Drywall (Compound) Drywall (With brown paper)	Office Room 3 Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD NAD NAD 2% CH NAD 2% CH NAD	N/A N/A N/A N/A 800 SF** N/A 800 SF** N/A	N/A N/A N/A Misc. Cat N/A Misc. Cat 1	NF NF NF NF NF NF	Good Good Good Good Fair Fair
plaster) Interior plaster surfacing (Olft-white plaster/gray debris) Window glazing, gray Window glazing, gray Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (Texture) Drywall (Cream tape) Drywall (With brown paper)	Room 3 Auto repair/Garage Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD NAD 2% CH NAD 2% CH 2% CH NAD	N/A N/A N/A 800 SF** N/A 800 SF** N/A	N/A N/A Misc. Cat 1 N/A Misc. Cat 1	NF NF NF NF	Good Good Good Fair Fair
plaster/gray debris) Window glazing, gray Window glazing, gray Drywall (Cream tape) Drywall (Joint Compound) Drywall (With brown paper) Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (With brown paper)	Auto repair/Garage Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD NAD 2% CH NAD 2% CH NAD	N/A N/A 800 SF** N/A 800 SF** N/A	N/A N/A Misc. Cat 1 N/A Misc. Cat 1	NF NF NF NF	Good Good Fair Fair
Window glazing, gray Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper) Drywall (Cream tape) Drywall (Cream tape) Drywall (Compound) Drywall (with brown paper)	Auto repair/Garage Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	NAD 2% CH NAD 2% CH NAD	N/A 800 SF** N/A 800 SF** N/A	N/A Misc. Cat 1 N/A Misc. Cat 1	NF NF NF	Good Fair Fair
Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper) Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 3 Room 3 Room 3 Room 3 Room 2 Room 2	2% CH NAD 2% CH NAD	800 SF** N/A 800 SF** N/A	Misc. Cat 1 N/A Misc. Cat 1	NF NF	Fair Fair
Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper) Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 3 Room 3 Room 2 Room 2	NAD 2% CH NAD	N/A 800 SF** N/A	1 N/A Misc. Cat 1	NF	Fair
Drywall (Joint Compound) Drywall (with brown paper) Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 3 Room 3 Room 2 Room 2	2% CH NAD	800 SF** N/A	Misc. Cat 1		
Drywall (with brown paper) Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 3 Room 2 Room 2	NAD	N/A	1	NF	1. Sec.
Drywall (Texture) Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 2 Room 2			NI/A		Fair
Drywall (Cream tape) Drywall (Joint Compound) Drywall (with brown paper)	Room 2	2% CH		IN/A	NF	Fair
Drywall (Joint Compound) Drywall (with brown paper)			800 SF**	Misc. Cat 1	NF	Fair
Drywall (with brown paper)		NAD	N/A	N/A	NF	Fair
	Room 2	2% CH	800 SF**	Misc. Cat 1	NF	Fair
Denserall (Teastower)	Room 2	NAD	N/A	N/A	NF	Good
Drywall (Texture)	Room 2	NAD	N/A	N/A	NF	Good
Drywall (Cream tape)	Room 2	NAD	N/A	N/A	NF	Good
Drywall (Joint Compound)	Room 2	NAD	N/A	N/A	NF	Good
Drywall (with brown paper)	Room 2	NAD	N/A	N/A	NF	Good
Wall felt, black	Room 2	NAD	N/A	N/A	NF	Good
Wall felt, black	Room 2	NAD	N/A	N/A	NF	Good
Exterior plaster surfacing (skim coat)	Southeast ext. wall	NAD	N/A	N/A	NF	Good
Exterior plaster surfacing (gray plaster)	South ext. wall	NAD	N/A	N/A	NF	Good
Exterior plaster surfacing (gray plaster)	Southwest ext. wall	NAD	N/A	N/A	NF	Good
plaster)	West ext. wall	NAD	N/A	N/A	NF	Good
plaster)	Northwest ext. wall	NAD	N/A	N/A	NF	Good
plaster)	Northeast ext. wall	NAD	N/A	N/A	NF	Good
						Good
						Good
						Good
Interior white caulk	Room 2	2% CH	30 LF	Misc. Cat		Good
Interior white caulk	Room 2	2% CH	30 LF	Misc. Cat 2	NF	Good
	Exterior north	N/A	650 CY			
	Wall felt, black Exterior plaster surfacing (skim coat) Exterior plaster surfacing (gray plaster) Exterior gray caulk Exterior gray caulk Exterior white caulk Interior white caulk	Wall felt, black Room 2 Exterior plaster surfacing (skim coat) Southeast ext. wall Exterior plaster surfacing (gray plaster) South ext. wall Exterior plaster surfacing (gray plaster) South ext. wall Exterior plaster surfacing (gray plaster) West ext. wall Exterior plaster surfacing (gray plaster) West ext. wall Exterior plaster surfacing (gray plaster) Northwest ext. wall Exterior plaster surfacing (gray plaster) Northeast ext. wall Exterior gray caulk West ext. wall Exterior gray caulk West ext. wall Exterior gray caulk West ext. wall Exterior white caulk West ext. wall Exterior white caulk West ext. wall	Wall felt, black Room 2 NAD Exterior plaster surfacing (skim coat) Southeast ext. wall NAD Exterior plaster surfacing (gray plaster) South ext. wall NAD Exterior plaster surfacing (gray plaster) South ext. wall NAD Exterior plaster surfacing (gray plaster) Southwest ext. wall NAD Exterior plaster surfacing (gray plaster) West ext. wall NAD Exterior plaster surfacing (gray plaster) Northwest ext. wall NAD Exterior plaster surfacing (gray plaster) Northeast ext. wall NAD Exterior gray caulk West ext. wall NAD Exterior gray caulk West ext. wall NAD Exterior white caulk West ext. wall NAD Exterior white caulk West ext. wall NAD Exterior white caulk West ext. wall NAD	Wall felt, black Room 2 NAD N/A Exterior plaster surfacing (skim coat) Southeast ext. wall NAD N/A Exterior plaster surfacing (gray plaster) South ext. wall NAD N/A Exterior plaster surfacing (gray plaster) South ext. wall NAD N/A Exterior plaster surfacing (gray plaster) Southwest ext. wall NAD N/A Exterior plaster surfacing (gray plaster) West ext. wall NAD N/A Exterior plaster surfacing (gray plaster) Northwest ext. wall NAD N/A Exterior plaster surfacing (gray plaster) Northwest ext. wall NAD N/A Exterior plaster surfacing (gray plaster) Northeast ext. wall NAD N/A Exterior gray caulk West ext. wall NAD N/A Exterior gray caulk West ext. wall NAD N/A Exterior white caulk West ext. wall NAD N/A Exterior white caulk West ext. wall NAD N/A	Wall felt, black Room 2 NAD N/A N/A Exterior plaster surfacing (skim coat) Southeast ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) South ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) South ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) Southwest ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) Southwest ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) Northwest ext. wall NAD N/A N/A Exterior plaster surfacing (gray plaster) Northwest ext. wall NAD N/A N/A Exterior gray caulk West ext. wall NAD N/A N/A Exterior gray caulk West ext. wall NAD N/A N/A Exterior gray caulk West ext. wall NAD N/A N/A Exterior white caulk West ext. wall NAD N/A N/A Interior white caulk West	Wall felt, black Room 2 NAD N/A N/A

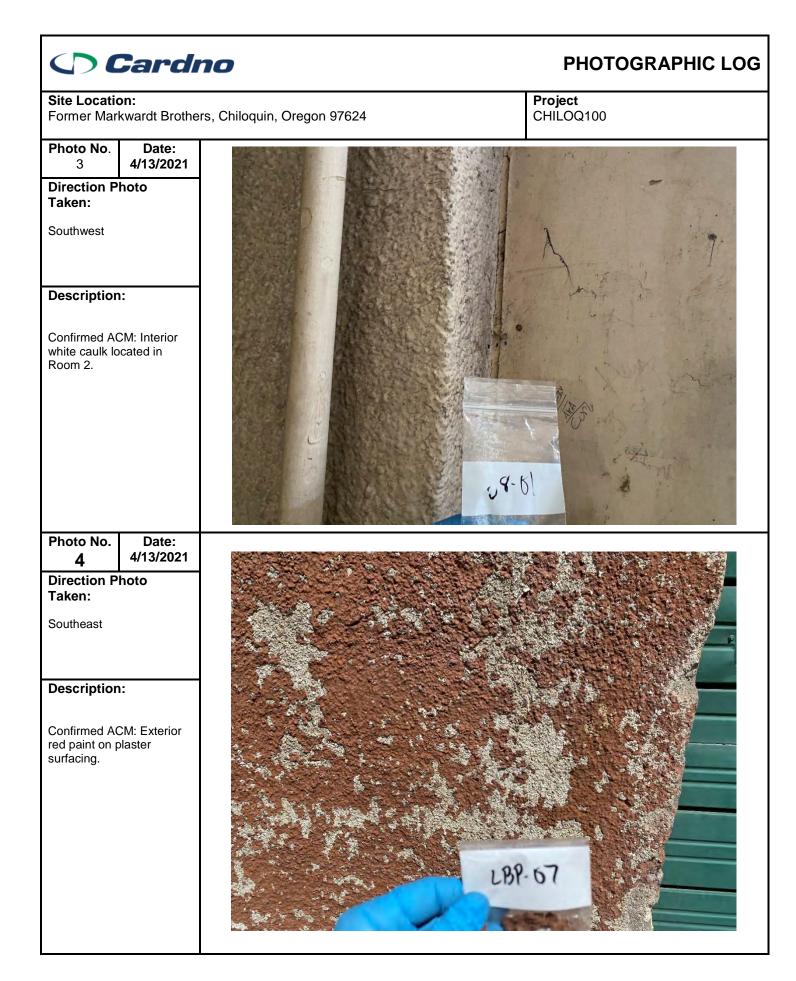
TABLE 2: SUMMARY OF PAINT CHIP ANALYSIS AND ASSESSMENT FACILITY NAME: FORMER MARKWARDT BROTHERS GARAGE CHILOQUIN, OREGON

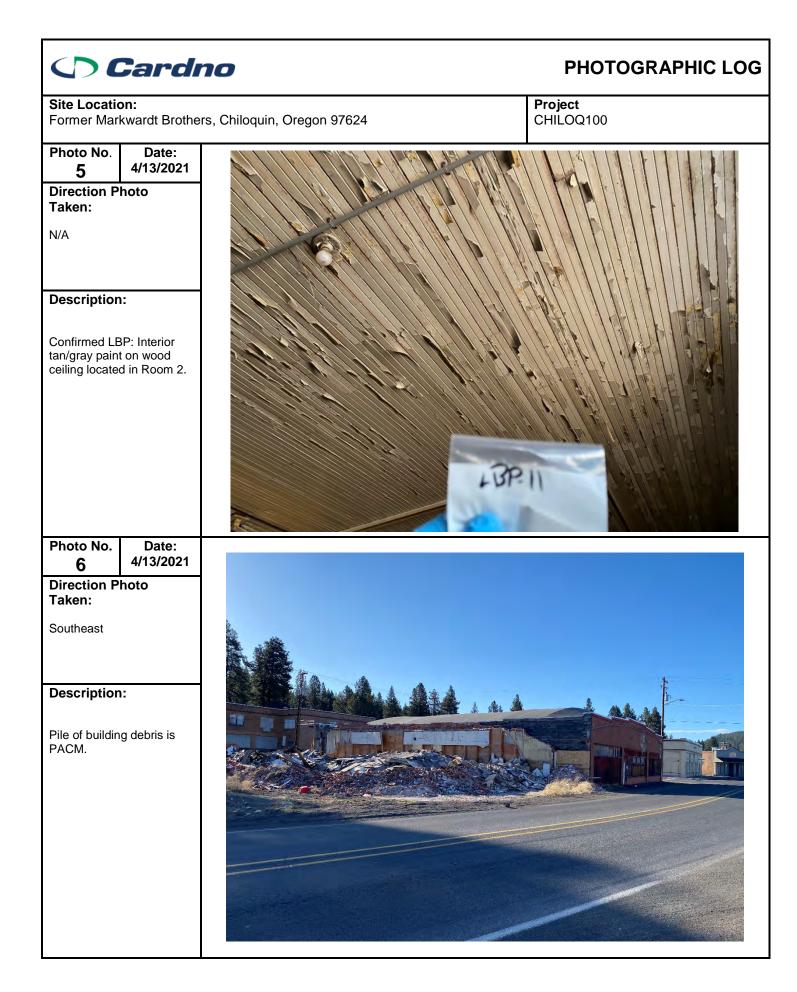
Sample ID	Date	Location	Color	Substrate	Percentage Lead	Estimated Quantity	Physical Condition
LBP-01	4/13/21	Auto repair/Garage	White	Wood	0.150%	N/A	Not Intact
LBP-02	4/13/21	Office	Yellow	Plaster	0.038%	N/A	Intact
LBP-03	4/13/21	Office	Pink	Wood	0.082%	N/A	Intact
LBP-04	4/13/21	Room 2	White	Drywall	BRL	N/A	Intact
LBP-05	4/13/21	Room 1	Blue	CMU	0.0062%	N/A	Intact
LBP-06	4/13/21	Room 2	Green	CMU	0.0042%	N/A	Intact
LBP-07	4/13/21	South Exterior Wall	Red	Plaster	2.000%	3,600 SF	Not Intact
LBP-08	4/13/21	South Exterior Wall (garage door)	Green	Metal	0.0210%	N/A	Intact
LBP-09	4/13/21	East Exterior Wall	Red	СМU	0.0110%	N/A	Intact
LBP-10	4/13/21	West Exterior Wall	Red	Wood	0.0120%	N/A	Intact
LBP-11	4/13/21	Room 2	Tan/gray	Wood	6.60%	1,200 SF	Not Intact
LBP-12	4/13/21	Parts Room	Green	Wood	0.0120%	N/A	Not Intact
Notos:		NM not measured		LE – linear feat	DDI Delauri	ah anatam (D	

Notes:

NM - not measured

n/a - not applicable


LF = linear feet BRL = E SF = square feet Limit


BRL = Below Laboratory Reporting Limit

Appendix A Photographic Log

Cardno **PHOTOGRAPHIC LOG** Project Site Location: Former Markwardt Brothers, Chiloquin, Oregon 97624 CHILOQ100 Photo No. Date: 4/13/2021 1 **Direction Photo** Taken: Southwest **Description:** Confirmed ACM: White skim coat on plaster surfacing located in Room 2. 01.02 Photo No. Date: 4/13/2021 2 **Direction Photo** Taken: Southeast **Description:** Confirmed ACM: White texture and joint compound on drywall located in Room 2.

FORMER MARKWARDT BROTHERS GARAGE

APPENDIX

SOIL BORING LOGS

											Pa	ge 1 of	
Borin	g/Well N					Permit	Number:			Facility Iden	tificati	on Nur	nber:
Site N	ame:					Boreho	le Start D	ate: 8.17.2	Borehole Start	Time: 15L	15	Г	АМ РРМ
	Form	er Mark	wardt Bro	os. Garag	ge		End D:		End	12	1	Г	
Envir	onmenta		actor: Cardno			Geolog	gist's/Engi	neer's Name: Ashton Smithwick	1	Environment	¥		
Drilli	ng Comp Stead	pany: dfast Se	ervices		Pavemen	t Thicks	ness (inch	es): Borehole Diar	meter (inches):	Bo	rehole	Depth ((feet):
Drilli	ng Meth	od(s): A/DP			nt Borehole soil moistur		n feet	Measured Well DTV water recharges in		OVA (list m	odel ar		
Dispo			Cuttings [ethod(s)]:				☐ Backfill	T Stoc	kpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked)	~							
Boreh	ole Con	npletion	ı (check o	ne):	IT W	Vell	Г Gгоц	nt F Bentonite	🗖 Backfi	11 Г.	Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba and o	ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA	0 - 2				1.7		1	Brown So So	mgd-zijt	-1		RI	
HA	2 - 4				6.6		3						B-1@2-4' 1650
DP	4 - 6				1.3		5						
DP	6 - 8						7					12-	
DP	8 - 10						9						
DP	10 - 12						11						

											Pa	ge 1 of	
Borin	g/Well 1	Number				Permit	Number:			Facility Ider	ntificati	on Nur	nber:
Site N	Jame:					Boreho	le Start D	ate: 8.17.21	Borehole Start 7	lime: 101	15	5	ам Грм
	Form	er Mark	wardt Bro	os. Garag	ge		End Da		End T			1	ам ГРМ
Envir	onmenta		actor: Cardno			Geolog	ist's/Engi	neer's Name: Ashton Smithwick		Environmer		hniciar	's Name:
Drilli	ng Comj Stea	pany: dfast Se	ervices		Pavemer	t Thickr	iess (inche 3		neter (inches): 7	Bo	rehole	Depth ((feet):
Drilli	ng Meth H	od(s): VDP		1.1.1	nt Borehole soil moistu	`		Measured Well DTW water recharges in		OVA (list m	nodel ar		k type):
					ethod(s)]: checked)		T I	Drum Spread	Backfill	T Stoo	:kp ile	T	Other
-			ı (check o		IF V		G rou	t EBentonite	E Backfil	I Г	Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size bas and of	her remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA	0 - 2				1.3		1 2	Brown g	aveny-so	m)lera		P	B-2@0.2 1115
НА	2 - 4				1.3		3						
DP	4 - 6				1.4		5 6	Brown gr Granse grains	ave14-Sa 1005e	m)		1 2-	-
DP	6 - 8						7 8						
DP	8 - 10						9 10			/			
DP	10 - 12						11	BTE	010`				
	10-12						12						

	_									_	ige 1 of	
Boring/Well	Number 3-3	r:			Permit	Number:			Facility Iden	tificati	ion Nur	nber:
Site Name:					Boreho	ole Start D	Date: 8-17-2	Borehole Start	Time: 091	0	F	АМ ГРМ
Form	ner Marl	cwardt Bro	os. Garag	e		End D			Time: 092		F	ам ГРМ
nvironmen		ractor: Cardno			Geolog	gist's/Eng	ineer's Name: Ashton Smithwick	1000	Environment		hniciar	ı's Name:
orilling Con Stea	npany: adfast Se	ervices		Pavemer	nt Thick	ness (inch T		meter (inches):	Bo	ehole	Depth	(feet):
orilling Met F	hod(s): IA/DP			t Borehole oil moistu			Measured Well DT water recharges i		OVA (list m	odel a		k type): FID X PID
isposition of the second se						Г	Drum 🎵 Spread	Backfill	T Stoc	cpile	Г	Other
orehole Co						G ro	ut 🗖 Bentonite	Backfi	II Г (Other (describ	e)
Sample Depth Interval (feet) Sample Type	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size b and	other remarks)	ors, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwate Samples (list sample number and depth or temporary scree interval)
HA 0-2						1	Brown gran	colly-silt South			2	B-3@0-2 1000
						2						
HA 2-4						4						
DP 4-6						5						
						6						
DP 6-8						7					1	-
						8					N	
OP 8-10						10	Brown Stag	int fire (grains			
DP 10 - 12						11						
						12	Brown silly	- som) Some	course	SM		
mple Type C		H = Post F s: D = Dr					poon; ST = Shelby Tub	e; $\mathbf{DP} = \text{Direct Pus}$	sh; Coson)c	Core;	$\mathbf{D}\mathbf{C} = \mathbf{I}$	Drill Cuttings

_		_										ge 1 of	
Borin	g/Well N	Number				Permit	Number:			Facility Iden		on Nur	mber:
Site N	lame:					Boreho	le Start D	ate: 8.17.21	Borehole Start	Time: 100)	P	ам Грм
	Form	er Mark	wardt Bro	os. Garag	ge		End Da			ime: 1015		Ī	ам ГРМ
Envir	onmenta		actor: Cardno			Geolog	ist's/Engi	neer's Name: Ashton Smithwick		Environmen		hniciar	n's Name:
Drilli	ng Comp Stead	oany: dfast Se	ervices		Pavemen	t Thickn	ness (inche 4		neter (inches):	Bo	rehole	Depth	(feet): 15'
Drilli	ng Meth H/	od(s): VDP			nt Borehole soil moistur	`		Measured Well DTW water recharges in		OVA (list m	odel ar		k type):
					ethod(s)]: checked)		r I	Spread	Backfill	☐ Stoc	kpile		Other
-			(check o		TT/V		Grou	at 🔽 Bentonite	☐ Backfil	n F .	Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size bas and of	ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА	0 - 2				1.6		1	Brown gran isose fine some der	lethy. Silt sgram			D	B-400,2
					1.4		2 3						
HA	2 - 4						4						
							5						
DP	4 - 6				1.8		6						
DP	6 - 8				2.2		7						
							8	Brown Sandy.	silt some	fine Scan		W	
DP	8 - 10						9					1	
							10	2					, in the second s
DP	10 - 12						12	Brown sint	7-Sand				
							1.1	1					

Boring	g/Well No B-Y	umber:				Fo		ite Name: kwardt Bros. Garage	Borehole Sta Enc	Page 2 of rt Date: d Date:	8.17.21
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, s and other remarks)	staining,	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP	12 - 14						13	Brown siltysons		12V	
							14				
DP	14 - 16						15	BTQIS		+	-
							16				
DP	16 - 18	-				1	17		1.1	201	11.2.2.2
							18				
DP	18 - 20	4					19				
							20				
							21				
							22				
							23				
							24				
DP	25						25				
							26				
							27				
							28				
							29				
DP	30						30				

	_										Pa	ge 1 of	
Borin	g/Well N	lumber B-				Permit	Number:			Facility Iden	tificati	on Nur	nber:
Site N	ame:	12			-	Boreho	le Start Da	ate: 8,17.2	Borehole Start T	ime: 1115	5	P	ам Грм
	Forme	er Mark	wardt Bro	s. Garag	çe.		End Da		End T			Г	
Envir	onmenta		actor: Cardno			Geolog		neer's Name: Ashton Smithwick		Environment		_	
Drillin	ng Comp Stead	any: Ifast Se	rvices	1	Pavemer	nt Thickr	ness (inche	es): Borehole Diame	eter (inches):	Bor	ehole l	Depth ((feet):
Drilli	ng Metho HA	od(s): VDP			nt Borehole soil moistu			Measured Well DTW water recharges in w		OVA (list mo	odel an		k type): FID X PID
			Cuttings [o nultiple ii					Drum Spread	E Backfill	☐ Stock	kp ile	٢	Other
			(check o		Γv		F Grou	t F Bentonite	🔽 Backfil		Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size base and oth	er remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА	0 - 2				3.0		1	Brown grave	1205e	14			B.5@0-2 1210
НА	2 - 4				3.6		3	Brown cla	pr-silt 1205e save	fines			
DP	4 - 6				1.1		5 6	Brown sitty So	1 -Sand megroubl		,	M	
DP	6 - 8						7 8					1~-	
DP	8 - 10						9 10	Brown war	se Sand				
DP	10 - 12						11 12						

										Pag	ge 2 of	
Boring	g/Well N							ite Name:	Borehole	Start D	ate:	
	BB	7				Fo	rmer Mar	kwardt Bros. Garage	1	End Da	te:	
Sample Type	Sa In	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, and other remarks)	2.1	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP	12 - 14		5				13	Brown vary fine sand L Gray Dense growant-sour L				
							14 15	Gray Dense growent-sour	nd			
DP	14 - 16						16	BT@IS'				
DP	16 - 18			1.77			17			=	0.13	0.00
							18 19					
DP	18 - 20						20					
							21					
							22					
							23					
DP	25						24					
							25 26					
							27					
							28					
							29					
DP	30						30					

												ige 1 of		_
Borin	g/Well 1	Number	B-6			Permit	Number:			Facility I	dentificati	on Nur	mber:	
Site N	lame:		V			Boreho	le Start Da	te: 8.17.21	Borehole Start	Time:)	125	C	AM TPM	
			kwardt Bro	os. Gara	ge		End Da	te:	1	Time: 11	140		ам Грурм	1
Envir	onmenta		ractor: Cardno			Geolog	ist's/Engin	eer's Name: Ashton Smithwick		Environ	nental Tec	hniciar	n's Name:	
Drilli	ng Com Stea		ervices		Pavemer	nt Thicki	ness (inche	s): Borehole Dian	neter (inches):		Borehole	Depth	(feet):	1
Drilli	ng Meth H	od(s): A/DP			nt Borehole soil moistu			Measured Well DTV water recharges in		OVA (lis	st model a			1
					ethod(s)]:		ΓD	rum T Spread	☐ Backfill	L s	Stockpile		Other	1
-			n (check o				Grout	Bentonite	☐ Backf	ill 1	Other (describ	e)	1
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba	e Description sed on USCS, ode ther remarks)	ors, stainin	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)	
HA	0-2				7.8		1 2	Brown Si	2027-5.1	t		0	B-6@0.2 1455 B-6 DUP	
HA	2 - 4				3.6		3						B-6 PUP 1500	(VOC)
DP	4 - 6				2.0		5							
DP	6 - 8				3.1		7					~		
DP	8 - 10						9 10	-				q	_	
							11	Bi	010					
DP	10 - 12						12							

yes d'

_	_					_									ge 1 of	
Borin	g/Well 1	Number B-	7			Permit	Number:						ty Ide	entificati	on Nu	mber:
Site N	Vame:					Boreho	ole Start D	ate:	8-	17.21	Borehole Start	Time:	13	30	Г	АМ ГРМ
100	Form	er Mark	wardt Bro	os. Garag	ge		End Da	ate:	10	L		Time:	13	55	Г	ам Горм
Envir	onmenta		actor: Cardno			Geolog	ist's/Engi		Jame: on Smit	hwick		Envir	onme	ental Tec	hnicia	n's Name:
Drilli	ng Com Stea	oany: dfast Se	ervices		Pavemen	t Thick	ness (inche	es):	Boreh	ole Dian	neter (inches):		В	orehole	Depth	(feet):
Drilli	ng Meth H/	od(s): √DP			nt Borehole soil moistur					Well DTV harges in	/ (in feet after well):	OVA	(list i	model ar		k type):
122					ethod(s)]: checked):		Г	Drum	∏ sj	pread	☐ Backfill	Г	Sto	ockpile	1	Other
-			I (check o		Γw		🗖 Grou	ıt	БВ	entonite	☐ Backfi	ill	Г	Other (describ	ie)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(iach		n size ba	e Description sed on USCS, odd ther remarks)	ors, stai	ning,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА	0 - 2				10.5		1	Bi	an	So	ndy-silt	-			D	B7-QU-2 1425
							2									
на	2 - 4				3.0		3									
					21		5									
DP	4-6				3.1		6									
DP	6-8				2		7								N	
					2.5		8									
DP	8 - 10						9			1						
							10			D	(au)				1	
DP	10 - 12						11			151	(010'					
							12	-								

											Pa	ge 1 of	ſ
Borin	g/Well N	Jumber B-8				Permit	Number:			Facility Iden	tificati	on Nur	mber:
Site N	Jame:					Boreho	le Start D	ate:	Borehole Start	l lime:		-	АМ РМ
	Form	er Mark	wardt Bro	os. Garag	ge		End Da	ate:	End T	ime:			ам ГРМ
Envir	onmenta		actor: Cardno			Geolog	ist's/Engi	neer's Name: Ashton Smithwick		Environment	tal Tec	hniciar	n's Name:
Drilli	ng Comp Stead	oany: lfast Se	rvices		Pavemen	t Thickr	tess (inche	es): Borehole Dian	neter (inches):	Bo	rehole l	Depth	(feet):
Drilli	ng Meth HA	od(s): VDP			nt Borehole soil moistur			Measured Well DTW water recharges in		OVA (list m	odel an		k type):
					ethod(s)]: checked).		Г	Drum F Spread	☐ Backfill	T Stoc	kpile	Г	Other
			(check o		Γw		C Grou	t Entonite	☐ Backfil		Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size bas	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА	0-2				0.8		1	Brown Sa	why-si'lt				
							2		l wose				8-802-4
НА	2 - 4				4.9		3						B-802-4 1542
							4						2
DP	4 - 6						5						
							6		I				
							7	Refu	ia1@6'	×Z			
DP	6-8						8						
							9						
DP	8 - 10						10						
	10 10						11						
DP	10 - 12						12						

												Pa	ige 1 of	
Borin	g/Well h	Vumber	:			Permit	Number:				Facility Iden	tificati	on Nur	nber:
	B	-9												
Site N	Vame:					Boreho	le Start D	ate:	8.7.21	Borehole Start	Time: 1310	>	Π.	АМ ГРМ
	Form	er Mark	wardt Bro	os. Garag	;e		End Da	ate:	L	End	Fime: 1324		Г	ам Рум
Envir	onmenta		actor: Cardno			Geolog	ist's/Engi		me: Smithwick		Environmen	_		
Drilli	ng Com Stead	oany: Ifast Se	ervices	_	Pavemen	t Thickr	ness (inch	es):	Borehole Dian	neter (inches):	Bo	rehole	Depth ((feet): O^{h}
Drilli	ng Meth H/	od(s): VDP			t Borehole soil moistur				sured Well DTW ater recharges in		OVA (list m	odel ar		
11.11.1					ethod(s)]: checked):		Г	Drum	Spread	Backfill	☐ Stoc	kp ile	Г	Other
-			(check o		r w		G rou	ıt	Bentonite	□ Backfi	u F	Other (describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(includ	le grain size bas	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or
e	5 5	ery	r six	'A	A							0]		temporary screen interval)
НА	0 - 2				13.9		I	Esto	m sòm	bh-sillt De somet	23		P	
							2		j I	se somen	FINES			
НА	2-4				22.4		3							B-9@2-4 140
1.6.1							4							140
					2.00		5						1	
DP	4-6				3.8		6						×	-
							7						VAD	
DP	6 - 8						8						1	
							9							
DP	8 - 10						10		1	_			_	-
							11		BIQ	10				
DP	10 - 12													
							12							· · · · · · · · · · · · · · · · · · ·

FORMER MARKWARDT BROTHERS GARAGE

APPENDIX

GROUNDWATER SAMPLING LOGS

$\boldsymbol{\zeta}$	Cardno
	Shaping the Future

GROUNDWATER SAMPLING - FIELD DATA SHEET

SITE INFORMATION

WELL INFORMATION

Gallons)

Facility:	Former Markwardt Bros. Garage	Well ID:	Tmm-1
Project Number:	CHILOQ100	Casing Diameter:	1"
Location:	Chiloquin, Oregon	TOC Elevation:	
Date Started:	8.18.21	Total Well Depth:	····
Date Completed:	L	Depth to Water:	Page 1
Sample ID #:	Tmur-1	GW Elevation:	

WEATHER CONDITIONS

Weather Conditions (Circle):	Clear	Rain	Windy	Cloudy	Hot	Cold	
Air Temperature:							

VOLUME CALCULATIONS

Total Well Depth 13.0	Ft.		Conversion Factors (WC to
Depth to Water 10.51	Ft.		<i>CF 2-inch</i> = 0.163
Water Column (WC): 2,49	Ft.		<i>CF</i> 4- <i>inch</i> = 0.652
(Well Volume = WC x CF)		t	01 / 1101 01022
1 Well Volume: 0.10	Gal.		<i>CF</i> 6- <i>inch</i> = 1.468
3 Well Volume:30	Gal.		

Time:	1100	1105	illo	1115	1120	1125
Purge Volume (gal.):	UND	0.20	0.20	0.20	3,20	0,20
<u>Total Volume (gal.):</u>	0.20	0.40	0.60	0.80	aui	1.20
<u>pH:</u>	6,90	6.70	6.63	6.57	6:55	6.54
Conductivity (µs/cm):	184.6	183.5	183.9	183.4	182.6	182.4
<u>Temperature (°C):</u>	11.6	11.8	11.9	12.0	12.0	12.0
<u>Turbidity (NTU):</u>	448.56	259.67	140.09	130.5	126.4	98.74
Dissolved Oxygen (mg/L):	4.11	4.00	3.85	3.69	3,64	3.60
Depth to Water (Ft.):						

SAMPLE INFORMATION

Sampled By:	Ashton Smithwick		
Time:	1170	-	÷

Additional Comments

GROUNDWATER SAMPLING – FIELD DATA SHEET

SITE INFORMATION

WELL INFORMATION

Facility:	Former Markwardt Bros. Garage	Well ID:	Tmw-2		
Project Number:	CHILOQ100	Casing Diameter:	The second se	st.	
Location:	Chiloquin, Oregon	TOC Elevation:			
Date Started:	-8/18/21	Total Well Depth:		3	
Date Completed:	1	Depth to Water:	10.12-Tol	10.15-1	o concrete
Sample ID #:	TMW-2	GW Elevation:	14.47-TOL	14.51-7	

WEATHER CONDITIONS

Weather Conditions (Circle):	Clear	Rain	Windy	Cloudy	Hot	Cold
Air Temperature:	450					

VOLUME CALCULATIONS

Total Well Depth	14.47	Ft.
Depth to Water	10.11	Ft.
Water Column (WC):	4.36	- Ft.
(Well Volum	$e = WC \ x \ CF)$	1
1 Well Volume:	0.18	Gal.
3 Well Volume:	0.54	Gal.

Conversion Factors (WC to Gallons) *CF 2-inch* = 0.163 *CF* 4-*inch* = 0.652 *CF* 6-inch = 1.468

Time:	0840	0845	0850	0 855	0900	0905
Purge Volume (gal.):	0	0,20	0,20	0.20	0.20	0.20
<u>Total Volume (gal.):</u>	0	0,20	0.40	0.60	0.80	1.00
<u>pH:</u>	7.50	7.11	6.88	6.77	6.76	6.72
Conductivity (µs/cm):	117.5	116.5	115.6	115.2	14.1	114.3
Temperature (°C):	12.0	11.9	12.0	11.9	11.9	11.9
<u>Turbidity (NTU):</u>	-	3,003.67	1,749.30	1,256.28	1.041.40	
Dissolved Oxygen (mg/L):	6.26	6.33	6.55	6.74	6.75	6.73
Depth to Water (Ft.):						

SAMPLE INFORMATION

Sampled By:	Ashton Smithwick
Time:	0910
Additional Comments	High turbidity

μ

RCRA motals (dissolved)

13 bottles.

GROUNDWATER SAMPLING - FIELD DATA SHEET

SITE INFORMATION

WELL INFORMATION

-

Facility:	Former M	arkwardt	Bros. Ga	irage	Well ID:	TWW	v-3
Project Number:	CHILOQ	100		(Casing Diameter:	1"	
Location:	Chiloquin	1, Oregor	1		TOC Elevation:		
Date Started:		8.21		T	otal Well Depth:	1443	TUC
Date Completed:		-			Depth to Water:	9.59	Tou
Sample ID #:	TM	N-3			GW Elevation:		
		WEAT	HER CO	ONDITIC	DNS 🔍		
Weather Conditions Air Ten	s (Circle): nperature:	Clear 85	Rain	Windy	Cloudy	Hot	Cold

VOLUME CALCULATIONS

Total Well Depth 11.43	Ft.	Conversion Factors (WC to Gallons)
Depth to Water 9.59	Ft.	<i>CF 2-inch</i> = 0.163
Water Column (WC): $1 \cdot S \mathcal{H}$ (Well Volume = $WC \times CF$)	Ft.	<i>CF</i> 4- <i>inch</i> = 0.652
1 Well Volume: 0,08	Gal.	<i>CF</i> 6-inch = 1.468
3 Well Volume: 0.21	Gal.	

Time:	1305	1310	1315	1320	1325	_
Purge Volume (gal.):	0	0.20	0.20	0.20	0.20	
<u>Total Volume (gal.):</u>	0	0.20	0.40	0.60	0.80	
<u>pH:</u>	7.01	6.83	6:73	6.69	6.67	
Conductivity (us/cm):	286.6	278.0	275.9	274.4	272.9	
<u>Temperature (°C):</u>	10.5	10.4	10.5	10.5	10.5	
<u>Turbidity (NTU):</u>	535.21	212.56	139,72	74.80	64.07	
Dissolved Oxygen (mg/L).	3.89	3.56	4.11	4.06	4.03	
Depth to Water (Ft.):						

SAMPLE INFORMATION

Sampled By: Time:	Ashton Smithwick	_
Additional Comments	TMW-3 DVP-1335 (VUU)	
		_

GROUNDWATER SAMPLING – FIELD DATA SHEET

SITE INFORMATION

WELL INFORMATION

	Former Markwardt Bros. Garage	Well ID:	TMW-Y
Project Number:		Casing Diameter:	1"
Location:	Chiloquin, Oregon	TOC Elevation:	
Date Started:	8.18.21	Total Well Depth:	14.8
Date Completed:	L	Depth to Water:	10.62
Sample ID #:	TMW-4	GW Elevation:	

WEATHER CONDITIONS

Weather Conditions (Circle):	Clear	Rain	(Windy) (Cloudy)	Hot	Cold	
Air Temperature:						

VOLUME CALCULATIONS

Total Well Depth 14. 중신	Ft.	Conversion Factors (WC to Gallons)
Depth to Water 10.62	Ft.	<i>CF 2-inch</i> = 0.163
Water Column (WC): 4.1% (Well Volume = WC x CF)	Ft.	<i>CF</i> 4- <i>inch</i> = 0.652
1 Well Volume: 0,17	Gal.	<i>CF</i> 6- <i>inch</i> = 1.468
3 Well Volume:51	Gal.	

Time:	1215	1220	1225	1230	235	
Purge Volume (gal.):		2.2	0.2	0.2	0.2	
<u>Total Volume (gal.):</u>	0	02	0.4	0,6	0.8	
<u>pH:</u>	2.36	1.23	7.99	6.99	6.95	
Conductivity (us/cm):	288.2	261.1	234.	254,2	254.8	
Temperature (°C):	10.4	10.2	10.3	10.3	10.4	2
<u>Turbidity (NTU):</u>	454.08	215.37	352.55	40.06	33.96	
Dissolved Oxygen (mg/L):	3.96	4.05	4,22	4.38	4.41	
Depth to Water (Ft.):						

SAMPLE INFORMATION

Sampled By:	Ashton Smithwick	
Time:	1240	

Additional Comments

GROUNDWATER SAMPLING – FIELD DATA SHEET

SITE INFORMATION

WELL INFORMATION

Facility:	Former Markwardt Bros. Garage	Well ID:	TMW-5	
Project Number:	CHILOQ100	Casing Diameter:	1"	
Location:	Chiloquin, Oregon	TOC Elevation:		
Date Started:	8.18.21			13.28 Toursto
Date Completed:	1	Depth to Water:	11.35 TOC	10.08 TO crotc
Sample ID #:	TMM-5	GW Elevation:		

WEATHER CONDITIONS

Weather Conditions (Circle): Clear Rain	Windy	Cloudy	Hot	Cold
Air Temperature: 60°				

VOLUME CALCULATIONS

Total Well Depth 13,28	Ft.
Depth to Water 10.08	Ft.
Water Column (WC): 3,200	Ft.
(Well Volume = $WC \times CF$)	-
1 Well Volume: 613	Gal.
3 Well Volume: 0.39	Gal.

Conversion Factors (WC to Gallons) CF 2-inch = 0.163 CF 4-inch = 0.652

CF 6-inch = 1.468

Time:	0950	0955	UNI	1005	10:10	1015
Purge Volume (gal.):		0.2	0.2	012	012	012
<u>Total Volume (gal.):</u>	0	0.2	014	0.6	0.6	0.6
<u>pH:</u>	8.31	7.04	6.81	6.62	6.51	6.46
Conductivity (µs/cm):	229.9	183.8	185.3	184.9	184.6	183.0
<u>Temperature (°C):</u>	12.7	12.6	12.6	12.7	12.7	12.7
Turbidity (NTU):	813,81	607.13	525,04	422,67	362.09	330,33
Dissolved Oxygen (mg/L):	8.74	6.97	6.40	5.82	5,41	5.17
Depth to Water (Ft.):						

SAMPLE INFORMATION

Sampled By:	Ashton Smithwick
Time:	1020

Additional Comments

FORMER MARKWARDT BROTHERS GARAGE

APPENDIX

LABORATORY ANALYTICAL REPORT(S)

Pace Analytical® ANALYTICAL REPORT September 03, 2021

Cardno - Peachtree Corners, GA

Sample Delivery Group: Samples Received: Project Number: Description:

L1393384 08/20/2021 CHILOQIOU Klamath Falls - Chiloquin, OR

Report To:

William Smithwick 6611 Bay Circle Suite 220 Peachtree Corners, GA 30071

Entire Report Reviewed By:

Vubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09 PAGE: 1 of 72 Тс

Ss

Cn

Sr

ʹQc

Gl

AI

Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
B-5 L1393384-01	7
B-6 L1393384-02	11
B-7 L1393384-03	15
B-1 L1393384-04	19
B-8 L1393384-05	23
B-9 L1393384-06	27
B-2 L1393384-07	31
B-3 L1393384-08	35
B-4 L1393384-09	39
B-6 DUP L1393384-10	43
Qc: Quality Control Summary	45
Total Solids by Method 2540 G-2011	45
Mercury by Method 7471B	47
Metals (ICP) by Method 6010D	48
Volatile Organic Compounds (GC) by Method NWTPHGX	50
Volatile Organic Compounds (GC/MS) by Method 8260D	52
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	56
Polychlorinated Biphenyls (GC) by Method 8082 A	57
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	58
GI: Glossary of Terms	70
Al: Accreditations & Locations	71
Sc: Sample Chain of Custody	72

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

PAGE: 2 of 72

SAMPLE SUMMARY

Ср

²Tc

Ss

⁴Cn

Sr

Qc

GI

A

°Sc

			Collected by	Collected date/time	Received da	te/time
B-5 L1393384-01 Solid			A. Smithwick	08/17/21 12:10	08/20/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:17	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:33	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:38	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729247	51.7	08/17/21 12:10	08/26/21 10:47	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.22	08/17/21 12:10	08/25/21 17:01	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 16:50	CAG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1729626	1	08/27/21 10:13	08/28/21 20:11	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 11:28	TMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time

B-6 L1393384-02 Solid			A. Smithwick	08/17/21 14:55	08/20/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:20	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:36	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:41	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729247	56.3	08/17/21 14:55	08/26/21 11:09	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.25	08/17/21 14:55	08/25/21 17:20	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 20:52	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	5	08/30/21 22:05	09/01/21 19:35	CAG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1729626	1	08/27/21 10:13	08/28/21 20:20	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 13:55	TMM	Mt. Juliet, TN

B-7 L1393384-03 Solid			Collected by A. Smithwick	Collected date/time 08/17/21 14:25	Received da 08/20/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:22	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:39	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:44	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729247	61.3	08/17/21 14:25	08/26/21 11:31	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.21	08/17/21 14:25	08/25/21 17:39	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 20:25	CAG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1729626	1	08/27/21 10:13	08/28/21 21:12	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 13:34	TMM	Mt. Juliet, TN

B-1 L1393384-04 Solid			Collected by A. Smithwick	Collected date/time 08/17/21 16:50	Received da 08/20/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:25	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:41	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:47	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729247	40.5	08/17/21 16:50	08/26/21 11:53	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	1.58	08/17/21 16:50	08/25/21 17:59	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 19:45	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 12:52	TMM	Mt. Juliet, TN

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQIOU	L1393384	09/03/21 16:09	3 of 72

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
B-8 L1393384-05 Solid			A. Smithwick	08/17/21 15:40	08/20/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:28	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:49	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:50	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729501	48.3	08/17/21 15:40	08/26/21 06:44	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	1.91	08/17/21 15:40	08/25/21 18:18	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 17:17	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 12:31	TMM	Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
B-9 L1393384-06 Solid			A. Smithwick	08/17/21 14:00	08/20/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:35	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:52	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:53	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729501	52	08/17/21 14:00	08/26/21 07:06	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.17	08/17/21 14:00	08/25/21 18:37	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 19:32	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1729325	1	08/26/21 02:20	08/26/21 13:13	TMM	Mt. Juliet, TN

			Collected by A. Smithwick	Collected date/time 08/17/21 11:15	Received da 08/20/21 09	
B-2 L1393384-07 Solid			A. Sintawiek	00/11/21 11:10	00/20/21/00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:38	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 08:51	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:10	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729501	45	08/17/21 11:15	08/26/21 08:32	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	1.77	08/17/21 11:15	08/25/21 18:57	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	09/02/21 14:36	TJD	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1730358	1	08/28/2113:00	08/29/21 01:36	BJP	Mt. Juliet, TN

B-3 L1393384-08 Solid			Collected by A. Smithwick	Collected date/time 08/17/21 10:00	Received da 08/20/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:40	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:55	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:56	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729501	56.5	08/17/21 10:00	08/26/21 08:54	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.18	08/17/21 10:00	08/25/21 19:16	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 20:39	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1730358	1	08/28/21 13:00	08/29/21 03:39	BJP	Mt. Juliet, TN

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09 Ср

Tc

Ss

°Cn

Sr

Qc

GI

ΆI

Sc

SAMPLE SUMMARY

B-4 L1393384-09 Solid			Collected by A. Smithwick	Collected date/time 08/17/21 10:40	Received da 08/20/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730124	1	08/30/21 09:19	08/30/21 09:25	СМК	Mt. Juliet, TN
Mercury by Method 7471B	WG1729091	1	08/25/21 10:09	08/25/21 19:43	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/26/21 09:57	KMG	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728695	1	08/25/21 01:47	08/27/21 06:59	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729501	42.8	08/17/21 10:40	08/26/21 09:15	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	1.64	08/17/21 10:40	08/25/21 19:35	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731367	1	08/30/21 22:05	08/31/21 19:59	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1730358	1	08/28/21 13:00	08/28/21 21:42	BJP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-6 DUP L1393384-10 Solid			A. Smithwick	08/17/21 15:00	08/20/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1730126	1	08/30/21 09:08	08/30/21 09:16	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729245	2.18	08/17/21 15:00	08/25/21 19:55	JAH	Mt. Juliet, TN

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

PROJECT: CHILOQIOU

SDG: L1393384

PAGE: 6 of 72

D-J Collected date/time: 08/17/21 12:10

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	68.1		1	08/30/2021 09:25	WG1730124	¯Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0587	1	08/25/2021 19:17	<u>WG1729091</u>

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg		date / time		Ŭ,	Qc
Arsenic	ND		2.94	1	08/26/2021 09:33	WG1728695		
Barium	202		0.734	1	08/26/2021 09:33	WG1728695	7	GI
Cadmium	ND		0.734	1	08/26/2021 09:33	WG1728695		UI
Chromium	24.0		1.47	1	08/26/2021 09:33	WG1728695	8	
Lead	2.11		0.734	1	08/26/2021 09:33	WG1728695	Ĭ	A
Selenium	ND		2.94	1	08/27/2021 06:38	WG1728695	L	
Silver	ND		1.47	1	08/26/2021 09:33	WG1728695	9	Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		8.76	51.7	08/26/2021 10:47	WG1729247
(S) a,a,a-Trifluorotoluene(FID)	93.0		77.0-120		08/26/2021 10:47	WG1729247

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.186	2.22	08/25/2021 17:01	WG1729245
Acrylonitrile	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
Benzene	ND		0.00373	2.22	08/25/2021 17:01	WG1729245
Bromobenzene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
Bromodichloromethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
Bromoform	ND		0.0932	2.22	08/25/2021 17:01	WG1729245
Bromomethane	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
n-Butylbenzene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
sec-Butylbenzene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
tert-Butylbenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
Carbon tetrachloride	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
Chlorobenzene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
Chlorodibromomethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
Chloroethane	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
Chloroform	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
Chloromethane	ND		0.0467	2.22	08/25/2021 17:01	WG1729245
2-Chlorotoluene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
4-Chlorotoluene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
1,2-Dibromo-3-Chloropropane	ND		0.0932	2.22	08/25/2021 17:01	WG1729245
1,2-Dibromoethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
Dibromomethane	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
1,2-Dichlorobenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
1,3-Dichlorobenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
1,4-Dichlorobenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245
Dichlorodifluoromethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
1,1-Dichloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
1,2-Dichloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245
ACCOUN	IT:		PROJEC	T:	SDG:	DATE/TIME:

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

1

B-5 Collected date/time: 08/17/21 12:10

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
cis-1,2-Dichloroethene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
trans-1,2-Dichloroethene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
1,2-Dichloropropane	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
1,1-Dichloropropene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
1,3-Dichloropropane	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
cis-1,3-Dichloropropene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
trans-1,3-Dichloropropene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
2,2-Dichloropropane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
Di-isopropyl ether	ND		0.00373	2.22	08/25/2021 17:01	WG1729245	
Ethylbenzene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
Hexachloro-1,3-butadiene	ND		0.0932	2.22	08/25/2021 17:01	WG1729245	
sopropylbenzene	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
p-Isopropyltoluene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
2-Butanone (MEK)	ND		0.373	2.22	08/25/2021 17:01	WG1729245	
Methylene Chloride	ND		0.0932	2.22	08/25/2021 17:01	WG1729245	
1-Methyl-2-pentanone (MIBK)	ND		0.0932	2.22	08/25/2021 17:01	<u>WG1729245</u>	
Methyl tert-butyl ether	ND		0.00373	2.22	08/25/2021 17:01	WG1729245	
Naphthalene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245	
n-Propylbenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
Styrene	ND		0.0467	2.22	08/25/2021 17:01	<u>WG1729245</u>	
I,1,1,2-Tetrachloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
I,1,2,2-Tetrachloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
letrachloroethene	ND		0.00932	2.22	08/25/2021 17:01	<u>WG1729245</u>	
Toluene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
I,2,3-Trichlorobenzene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0467	2.22	08/25/2021 17:01	WG1729245	
I,1,1-Trichloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
1,1,2-Trichloroethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
Trichloroethene	ND		0.00373	2.22	08/25/2021 17:01	WG1729245	
Trichlorofluoromethane	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
1,2,3-Trichloropropane	ND		0.0467	2.22	08/25/2021 17:01	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
1,2,3-Trimethylbenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
Vinyl chloride	ND		0.00932	2.22	08/25/2021 17:01	WG1729245	
1,3,5-Trimethylbenzene	ND		0.0186	2.22	08/25/2021 17:01	WG1729245	
Xylenes, Total	ND		0.0242	2.22	08/25/2021 17:01	WG1729245	
(S) Toluene-d8	98.3		75.0-131		08/25/2021 17:01	WG1729245	
(S) 4-Bromofluorobenzene	93.0		67.0-138		08/25/2021 17:01	WG1729245	
(S) 1,2-Dichloroethane-d4	89.6		70.0-130		08/25/2021 17:01	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.87	1	08/31/2021 16:50	<u>WG1731367</u>
Residual Range Organics (RRO)	ND		14.7	1	08/31/2021 16:50	<u>WG1731367</u>
(S) o-Terphenyl	47.6		18.0-148		08/31/2021 16:50	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 12:10

SAMPLE RESULTS - 01 L1393384

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
PCB 1016	ND		0.0499	1	08/28/2021 20:11	<u>WG1729626</u>	
PCB 1221	ND		0.0499	1	08/28/2021 20:11	<u>WG1729626</u>	
PCB 1232	ND		0.0499	1	08/28/2021 20:11	WG1729626	
PCB 1242	ND		0.0499	1	08/28/2021 20:11	<u>WG1729626</u>	
PCB 1248	ND		0.0250	1	08/28/2021 20:11	WG1729626	
PCB 1254	ND		0.0250	1	08/28/2021 20:11	<u>WG1729626</u>	
PCB 1260	ND		0.0250	1	08/28/2021 20:11	<u>WG1729626</u>	
(S) Decachlorobiphenyl	84.6		10.0-135		08/28/2021 20:11	<u>WG1729626</u>	
(S) Tetrachloro-m-xylene	92.8		10.0-139		08/28/2021 20:11	WG1729626	

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Cardno - Peachtree Corners, GA

mg/kg		//					
		mg/kg		date / time			
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		2.45	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.0489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28	WG1729325		
ND		0.489	1	08/26/2021 11:28			
ND		0.489	1	08/26/2021 11:28			
ND			1	08/26/2021 11:28			
ND			1	08/26/2021 11:28			
			1				
			1				
	C3						
			1				
			1				
NU		0.489	I	08/26/202111:28	<u>WG1/29325</u>		
	ND ND	ND ND	ND 0.0489 ND 0.489 ND 0.489 ND 0.489 ND 0.489 ND 0.489 ND 0.489 ND 0.0489 ND 0.0489 ND 0.0489 ND 0.0489 ND 0.0489 ND 0.489 ND 0.489	ND 0.0489 1 ND 0.489 1	ND 0.0489 1 08/26/202111:28 ND 0.489 1 08/26/202111:28	ND 0.0489 1 08/26/202111:28 WG1729325 ND 2.45 1 08/26/202111:28 WG1729325 ND 0.0489 1 08/26/202111:28 WG1729325 ND 0.489 1 08/26/202111:28 WG1729325 ND 0.4489 1 08/26/202111:28 WG1729325 ND 0.4489 1 08/26/202111:28 WG1729325 ND 0.4489 1 08/26/202111:28 WG1729325 ND 0.489 <t< td=""><td>ND 0.0489 1 08/26/2011128 WGT29325 ND 2.45 1 08/26/2011128 WGT29325 ND 0.0489 1 08/26/2011128 WGT29325 ND 0.0489 1 08/26/2021128 WGT29325 ND 0.489 1 08/26/2021128</td></t<>	ND 0.0489 1 08/26/2011128 WGT29325 ND 2.45 1 08/26/2011128 WGT29325 ND 0.0489 1 08/26/2011128 WGT29325 ND 0.0489 1 08/26/2021128 WGT29325 ND 0.489 1 08/26/2021128

CHILOQIOU

L1393384

9 of 72

09/03/21 16:09

Qc

GI

ΆI

Sc

B-5 Collected date/time: 08/17/21 12:10

SAMPLE RESULTS - 01

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
Pyrene	ND		0.0489	1	08/26/2021 11:28	WG1729325	2
1,2,4-Trichlorobenzene	ND		0.489	1	08/26/2021 11:28	WG1729325	
4-Chloro-3-methylphenol	ND		0.489	1	08/26/2021 11:28	WG1729325	3
2-Chlorophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	3
2,4-Dichlorophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	L
2,4-Dimethylphenol	ND		0.489	1	08/26/2021 11:28	WG1729325	2
4,6-Dinitro-2-methylphenol	ND		0.489	1	08/26/2021 11:28	WG1729325	
2,4-Dinitrophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	
2-Nitrophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	9
4-Nitrophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	
Pentachlorophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	e
Phenol	ND		0.489	1	08/26/2021 11:28	WG1729325	
2,4,6-Trichlorophenol	ND		0.489	1	08/26/2021 11:28	WG1729325	E
(S) 2-Fluorophenol	39.2		12.0-120		08/26/2021 11:28	WG1729325	
(S) Phenol-d5	37.3		10.0-120		08/26/2021 11:28	WG1729325	
(S) Nitrobenzene-d5	43.2		10.0-122		08/26/2021 11:28	WG1729325	8
(S) 2-Fluorobiphenyl	42.6		15.0-120		08/26/2021 11:28	WG1729325	
(S) 2,4,6-Tribromophenol	46.8		10.0-127		08/26/2021 11:28	WG1729325	5
(S) p-Terphenyl-d14	37.7		10.0-120		08/26/2021 11:28	WG1729325	

Collected date/time: 08/17/21 14:55

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	74.5		1	08/30/2021 09:25	WG1730124	Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0537	1	08/25/2021 19:20	WG1729091

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.69	1	08/26/2021 09:36	WG1728695
Barium	156		0.671	1	08/26/2021 09:36	WG1728695
Cadmium	ND		0.671	1	08/26/2021 09:36	WG1728695
Chromium	15.8		1.34	1	08/26/2021 09:36	WG1728695
Lead	36.8		0.671	1	08/26/2021 09:36	WG1728695
Selenium	ND		2.69	1	08/27/2021 06:41	WG1728695
Silver	ND		1.34	1	08/26/2021 09:36	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		8.42	56.3	08/26/2021 11:09	WG1729247
(S) a,a,a-Trifluorotoluene(FID)	93.7		77.0-120		08/26/2021 11:09	WG1729247

Volatile Organic Compounds (GC/MS) by Method 8260D

Cardno - Peachtree Corners, GA

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.169	2.25	08/25/2021 17:20	WG1729245	
Acrylonitrile	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
Benzene	ND		0.00336	2.25	08/25/2021 17:20	WG1729245	
Bromobenzene	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
Bromodichloromethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
Bromoform	ND		0.0841	2.25	08/25/2021 17:20	WG1729245	
Bromomethane	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
n-Butylbenzene	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
sec-Butylbenzene	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
tert-Butylbenzene	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
Carbon tetrachloride	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
Chlorobenzene	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
Chlorodibromomethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
Chloroethane	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
Chloroform	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
Chloromethane	ND		0.0420	2.25	08/25/2021 17:20	WG1729245	
2-Chlorotoluene	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
4-Chlorotoluene	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0841	2.25	08/25/2021 17:20	WG1729245	
1,2-Dibromoethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
Dibromomethane	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
1,2-Dichlorobenzene	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
1,3-Dichlorobenzene	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
1,4-Dichlorobenzene	ND		0.0169	2.25	08/25/2021 17:20	WG1729245	
Dichlorodifluoromethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
1,1-Dichloroethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
1,2-Dichloroethane	ND		0.00841	2.25	08/25/2021 17:20	WG1729245	
ACCOUN	T:		PROJEC	T:	SDG:	DATE/TIME:	PAG

CHILOQIOU

L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 11 of 72 Ss

Cn

Sr

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry) Qua	alifier RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg		date / time		
1,1-Dichloroethene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
cis-1,2-Dichloroethene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
trans-1,2-Dichloroethene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
1,2-Dichloropropane	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
l,1-Dichloropropene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
1,3-Dichloropropane	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
cis-1,3-Dichloropropene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
rans-1,3-Dichloropropene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
2,2-Dichloropropane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
Di-isopropyl ether	ND	0.00336	2.25	08/25/2021 17:20	WG1729245	
thylbenzene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
lexachloro-1,3-butadiene	ND	0.0841	2.25	08/25/2021 17:20	WG1729245	
sopropylbenzene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
-Isopropyltoluene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
-Butanone (MEK)	ND	0.336	2.25	08/25/2021 17:20	WG1729245	
lethylene Chloride	ND	0.0841	2.25	08/25/2021 17:20	WG1729245	
-Methyl-2-pentanone (MIBK)	ND	0.0841	2.25	08/25/2021 17:20	WG1729245	
lethyl tert-butyl ether	ND	0.00336	2.25	08/25/2021 17:20	WG1729245	
laphthalene	ND	0.0420	2.25	08/25/2021 17:20	WG1729245	
-Propylbenzene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
tyrene	ND	0.0420	2.25	08/25/2021 17:20	WG1729245	
1,1,2-Tetrachloroethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
1,2,2-Tetrachloroethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
,1,2-Trichlorotrifluoroethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
etrachloroethene	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
oluene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
2,3-Trichlorobenzene	ND	0.0420	2.25	08/25/2021 17:20	WG1729245	
,2,4-Trichlorobenzene	ND	0.0420	2.25	08/25/2021 17:20	WG1729245	
1,1-Trichloroethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
1,2-Trichloroethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
richloroethene	ND	0.00336	2.25	08/25/2021 17:20	WG1729245	
richlorofluoromethane	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
,2,3-Trichloropropane	ND	0.0420	2.25	08/25/2021 17:20	WG1729245	
2,4-Trimethylbenzene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
2,3-Trimethylbenzene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
/inyl chloride	ND	0.00841	2.25	08/25/2021 17:20	WG1729245	
3,5-Trimethylbenzene	ND	0.0169	2.25	08/25/2021 17:20	WG1729245	
Kylenes, Total	ND	0.0218	2.25	08/25/2021 17:20	WG1729245	
(S) Toluene-d8	103	75.0-131		08/25/2021 17:20	WG1729245	
(S) 4-Bromofluorobenzene	93.3	67.0-138		08/25/2021 17:20	WG1729245	
(S) 1,2-Dichloroethane-d4	88.4	70.0-130		08/25/2021 17:20	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	111	<u>J3 J6</u>	5.37	1	08/31/2021 20:52	WG1731367
Residual Range Organics (RRO)	564		67.1	5	09/01/2021 19:35	<u>WG1731367</u>
(S) o-Terphenyl	46.5		18.0-148		08/31/2021 20:52	<u>WG1731367</u>
(S) o-Terphenyl	54.1		18.0-148		09/01/2021 19:35	<u>WG1731367</u>

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 14:55

Cardno - Peachtree Corners, GA

SAMPLE RESULTS - 02 L1393384

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
PCB 1016	ND		0.0456	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1221	ND		0.0456	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1232	ND		0.0456	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1242	ND		0.0456	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1248	ND		0.0228	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1254	ND		0.0228	1	08/28/2021 20:20	<u>WG1729626</u>	
PCB 1260	ND		0.0228	1	08/28/2021 20:20	<u>WG1729626</u>	
(S) Decachlorobiphenyl	74.5		10.0-135		08/28/2021 20:20	<u>WG1729626</u>	
(S) Tetrachloro-m-xylene	83.6		10.0-139		08/28/2021 20:20	WG1729626	

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	mg/kg						
•	шу/ку		mg/kg		date / time		
Acenaphthene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Acenaphthylene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Anthracene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Benzidine	ND		2.24	1	08/26/2021 13:55	WG1729325	
Benzo(a)anthracene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Benzo(b)fluoranthene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Benzo(k)fluoranthene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Benzo(g,h,i)perylene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Benzo(a)pyrene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Bis(2-chlorethoxy)methane	ND		0.447	1	08/26/2021 13:55	WG1729325	
Bis(2-chloroethyl)ether	ND		0.447	1	08/26/2021 13:55	WG1729325	
2,2-Oxybis(1-Chloropropane)	ND		0.447	1	08/26/2021 13:55	WG1729325	
1-Bromophenyl-phenylether	ND		0.447	1	08/26/2021 13:55	WG1729325	
2-Chloronaphthalene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
4-Chlorophenyl-phenylether	ND		0.447	1	08/26/2021 13:55	WG1729325	
Chrysene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
Dibenz(a,h)anthracene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
,2-Dichlorobenzene	ND		0.447	1	08/26/2021 13:55	WG1729325	
,3-Dichlorobenzene	ND		0.447	1	08/26/2021 13:55	WG1729325	
4-Dichlorobenzene	ND		0.447	1	08/26/2021 13:55	WG1729325	
,3-Dichlorobenzidine	ND		0.447	1	08/26/2021 13:55	WG1729325	
2,4-Dinitrotoluene	ND		0.447	1	08/26/2021 13:55	WG1729325	
2,6-Dinitrotoluene	ND		0.447	1	08/26/2021 13:55	WG1729325	
luoranthene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
luorene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
lexachlorobenzene	ND		0.447	1	08/26/2021 13:55	WG1729325	
lexachloro-1,3-butadiene	ND		0.447	1	08/26/2021 13:55	WG1729325	
lexachlorocyclopentadiene	ND	C3	0.447	1	08/26/2021 13:55	WG1729325	
lexachloroethane	ND	_	0.447	1	08/26/2021 13:55	WG1729325	
ndeno(1,2,3-cd)pyrene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
sophorone	ND		0.447	1	08/26/2021 13:55	WG1729325	
laphthalene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
litrobenzene	ND		0.447	1	08/26/2021 13:55	WG1729325	
-Nitrosodimethylamine	ND		0.447	1	08/26/2021 13:55	WG1729325	
-Nitrosodiphenylamine	ND		0.447	1	08/26/2021 13:55	WG1729325	
-Nitrosodi-n-propylamine	ND		0.447	1	08/26/2021 13:55	WG1729325	
henanthrene	ND		0.0447	1	08/26/2021 13:55	WG1729325	
enzylbutyl phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325	
lis(2-ethylhexyl)phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325 WG1729325	
Di-n-butyl phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325 WG1729325	
Diethyl phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325 WG1729325	
Dimethyl phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325	
Di-n-octyl phthalate	ND		0.447	1	08/26/2021 13:55	WG1729325 WG1729325	

CHILOQIOU

L1393384

13 of 72

09/03/21 16:09

Qc

GI

ΆI

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
Pyrene	ND		0.0447	1	08/26/2021 13:55	WG1729325	2
1,2,4-Trichlorobenzene	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
4-Chloro-3-methylphenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	E
2-Chlorophenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
2,4-Dichlorophenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	L
2,4-Dimethylphenol	ND		0.447	1	08/26/2021 13:55	WG1729325	
4,6-Dinitro-2-methylphenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
2,4-Dinitrophenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
2-Nitrophenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
4-Nitrophenol	ND		0.447	1	08/26/2021 13:55	WG1729325	
Pentachlorophenol	ND		0.447	1	08/26/2021 13:55	WG1729325	
Phenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	
2,4,6-Trichlorophenol	ND		0.447	1	08/26/2021 13:55	<u>WG1729325</u>	Г
(S) 2-Fluorophenol	48.2		12.0-120		08/26/2021 13:55	<u>WG1729325</u>	
(S) Phenol-d5	46.1		10.0-120		08/26/2021 13:55	<u>WG1729325</u>	L
(S) Nitrobenzene-d5	53.5		10.0-122		08/26/2021 13:55	WG1729325	
(S) 2-Fluorobiphenyl	59.2		15.0-120		08/26/2021 13:55	WG1729325	
(S) 2,4,6-Tribromophenol	64.4		10.0-127		08/26/2021 13:55	<u>WG1729325</u>	Γ
(S) p-Terphenyl-d14	44.7		10.0-120		08/26/2021 13:55	WG1729325	

SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 14:25

SAMPLE RESULTS - 03 L1393384

Total Solids by Method 2540 G-2011

	F	esult	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	9	, >			date / time		2
Total Solids	7	3.5		1	08/30/2021 09:25	WG1730124	¯Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0544	1	08/25/2021 19:22	<u>WG1729091</u>

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.72	1	08/26/2021 09:39	WG1728695
Barium	199		0.680	1	08/26/2021 09:39	WG1728695
Cadmium	ND		0.680	1	08/26/2021 09:39	WG1728695
Chromium	14.1		1.36	1	08/26/2021 09:39	WG1728695
Lead	58.9		0.680	1	08/26/2021 09:39	WG1728695
Selenium	ND		2.72	1	08/27/2021 06:44	WG1728695
Silver	ND		1.36	1	08/26/2021 09:39	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		9.24	61.3	08/26/2021 11:31	WG1729247
(S) a,a,a-Trifluorotoluene(FID)	92.8		77.0-120		08/26/2021 11:31	WG1729247

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.169	2.21	08/25/2021 17:39	WG1729245	
Acrylonitrile	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
Benzene	ND		0.00337	2.21	08/25/2021 17:39	WG1729245	
Bromobenzene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
Bromodichloromethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Bromoform	ND		0.0843	2.21	08/25/2021 17:39	WG1729245	
Bromomethane	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
n-Butylbenzene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
sec-Butylbenzene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
tert-Butylbenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Carbon tetrachloride	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Chlorobenzene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Chlorodibromomethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Chloroethane	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Chloroform	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Chloromethane	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
2-Chlorotoluene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
4-Chlorotoluene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0843	2.21	08/25/2021 17:39	WG1729245	
1,2-Dibromoethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Dibromomethane	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,2-Dichlorobenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,3-Dichlorobenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,4-Dichlorobenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Dichlorodifluoromethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
1,1-Dichloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
1,2-Dichloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
ACCOUN	T:		PROJEC	CT:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

PAGE: 15 of 72

1

Ss

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
cis-1,2-Dichloroethene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
trans-1,2-Dichloroethene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,2-Dichloropropane	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
1,1-Dichloropropene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
1,3-Dichloropropane	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
cis-1,3-Dichloropropene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
trans-1,3-Dichloropropene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
2,2-Dichloropropane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Di-isopropyl ether	ND		0.00337	2.21	08/25/2021 17:39	WG1729245	
Ethylbenzene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Hexachloro-1,3-butadiene	ND		0.0843	2.21	08/25/2021 17:39	WG1729245	
lsopropylbenzene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
p-lsopropyltoluene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
2-Butanone (MEK)	ND		0.337	2.21	08/25/2021 17:39	WG1729245	
Methylene Chloride	ND		0.0843	2.21	08/25/2021 17:39	WG1729245	
4-Methyl-2-pentanone (MIBK)	ND		0.0843	2.21	08/25/2021 17:39	WG1729245	
Methyl tert-butyl ether	ND		0.00337	2.21	08/25/2021 17:39	WG1729245	
Naphthalene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
n-Propylbenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Styrene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
1,1,1,2-Tetrachloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
I,1,2,2-Tetrachloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Tetrachloroethene	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Toluene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
I,2,3-Trichlorobenzene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
I,1,1-Trichloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
I,1,2-Trichloroethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
Trichloroethene	ND		0.00337	2.21	08/25/2021 17:39	WG1729245	
Trichlorofluoromethane	ND		0.00843	2.21	08/25/2021 17:39	WG1729245	
1,2,3-Trichloropropane	ND		0.0421	2.21	08/25/2021 17:39	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0169	2.21	08/25/202117:39	WG1729245	
I,2,3-Trimethylbenzene	ND		0.0169	2.21	08/25/2021 17:39	WG1729245	
Vinyl chloride	ND		0.00843	2.21	08/25/202117:39	WG1729245	
I,3,5-Trimethylbenzene	ND		0.0169	2.21	08/25/202117:39	WG1729245	
Xylenes, Total	ND		0.0219	2.21	08/25/202117:39	WG1729245	
(S) Toluene-d8	98.6		75.0-131		08/25/2021 17:39	WG1729245	
(S) 4-Bromofluorobenzene	91.9		67.0-138		08/25/2021 17:39	WG1729245	
(S) 1,2-Dichloroethane-d4	89.3		70.0-130		08/25/2021 17:39	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.44	1	08/31/2021 20:25	WG1731367
Residual Range Organics (RRO)	ND		13.6	1	08/31/2021 20:25	WG1731367
(S) o-Terphenyl	45.0		18.0-148		08/31/2021 20:25	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/2116:09

Collected date/time: 08/17/21 14:25

Cardno - Peachtree Corners, GA

SAMPLE RESULTS - 03 L1393384

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
PCB 1016	ND		0.0463	1	08/28/2021 21:12	WG1729626	
PCB 1221	ND		0.0463	1	08/28/2021 21:12	WG1729626	
PCB 1232	ND		0.0463	1	08/28/2021 21:12	WG1729626	
PCB 1242	ND		0.0463	1	08/28/2021 21:12	WG1729626	
PCB 1248	ND		0.0231	1	08/28/2021 21:12	WG1729626	
PCB 1254	ND		0.0231	1	08/28/2021 21:12	WG1729626	
PCB 1260	ND		0.0231	1	08/28/2021 21:12	WG1729626	
(S) Decachlorobiphenyl	90.0		10.0-135		08/28/2021 21:12	WG1729626	
(S) Tetrachloro-m-xylene	88.7		10.0-139		08/28/2021 21:12	WG1729626	

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	mg/kg		date / time		
			date / time		
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	2.27	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	<u>WG1729325</u>	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	<u>WG1729325</u>	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
<u>C3</u>	0.453	1	08/26/2021 13:34	WG1729325	
_	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.453	1	08/26/2021 13:34	WG1729325	
	0.0453	1	08/26/2021 13:34	WG1729325	
	0.400	I	00/20/2021 13:34	<u>w01/23525</u>	
		0.453 0.453 0.453 0.453 0.453 0.453 0.453 PROJEC	0.453 1 0.453 1 0.453 1 0.453 1	0.453108/26/202113:340.453108/26/202113:340.453108/26/202113:340.453108/26/202113:340.453108/26/202113:34	0.453 1 08/26/2021 13:34 WG1729325 0.453 1 08/26/2021 13:34 WG1729325

L1393384

CHILOQIOU

09/03/21 16:09

17 of 72

Qc

GI

ΆI

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
Pyrene	ND		0.0453	1	08/26/2021 13:34	WG1729325	2.
1,2,4-Trichlorobenzene	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	
4-Chloro-3-methylphenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	3
2-Chlorophenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	3
2,4-Dichlorophenol	ND		0.453	1	08/26/2021 13:34	WG1729325	L
2,4-Dimethylphenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	4
4,6-Dinitro-2-methylphenol	ND		0.453	1	08/26/2021 13:34	WG1729325	
2,4-Dinitrophenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	5
2-Nitrophenol	ND		0.453	1	08/26/2021 13:34	WG1729325	5
4-Nitrophenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	
Pentachlorophenol	ND		0.453	1	08/26/2021 13:34	WG1729325	6
Phenol	ND		0.453	1	08/26/2021 13:34	<u>WG1729325</u>	
2,4,6-Trichlorophenol	ND		0.453	1	08/26/2021 13:34	WG1729325	7
(S) 2-Fluorophenol	45.1		12.0-120		08/26/2021 13:34	<u>WG1729325</u>	· · · · · · · · · · · · · · · · · · ·
(S) Phenol-d5	39.4		10.0-120		08/26/2021 13:34	WG1729325	L
(S) Nitrobenzene-d5	50.0		10.0-122		08/26/2021 13:34	WG1729325	8
(S) 2-Fluorobiphenyl	51.5		15.0-120		08/26/2021 13:34	WG1729325	
(S) 2,4,6-Tribromophenol	56.1		10.0-127		08/26/2021 13:34	WG1729325	9
(S) p-Terphenyl-d14	42.6		10.0-120		08/26/2021 13:34	WG1729325	

SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 16:50

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		70.2		1	08/30/2021 09:25	WG1730124	ЪС

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0569	1	08/25/2021 19:25	WG1729091

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
rsenic	ND		2.85	1	08/26/2021 09:41	WG1728695
ium	198		0.712	1	08/26/2021 09:41	WG1728695
dmium	ND		0.712	1	08/26/2021 09:41	WG1728695
romium	26.8		1.42	1	08/26/2021 09:41	WG1728695
ad	1.85		0.712	1	08/26/2021 09:41	WG1728695
lenium	ND		2.85	1	08/27/2021 06:47	WG1728695
lver	ND		1.42	1	08/26/2021 09:41	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		6.83	40.5	08/26/2021 11:53	WG1729247
(S) a,a,a-Trifluorotoluene(FID)	93.5		77.0-120		08/26/2021 11:53	WG1729247

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.134	1.58	08/25/2021 17:59	WG1729245	
Acrylonitrile	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
Benzene	ND		0.00267	1.58	08/25/2021 17:59	WG1729245	
Bromobenzene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
Bromodichloromethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Bromoform	ND		0.0668	1.58	08/25/2021 17:59	WG1729245	
Bromomethane	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
n-Butylbenzene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
sec-Butylbenzene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
tert-Butylbenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
Carbon tetrachloride	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
Chlorobenzene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Chlorodibromomethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Chloroethane	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
Chloroform	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Chloromethane	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
2-Chlorotoluene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
4-Chlorotoluene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0668	1.58	08/25/2021 17:59	WG1729245	
1,2-Dibromoethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Dibromomethane	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
1,2-Dichlorobenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
1,3-Dichlorobenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
1,4-Dichlorobenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
Dichlorodifluoromethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
1,1-Dichloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
1,2-Dichloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
ACCOUN	T:		PROJEC	CT:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

1

Ss

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
I,1-Dichloroethene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
cis-1,2-Dichloroethene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
trans-1,2-Dichloroethene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
1,2-Dichloropropane	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
l,1-Dichloropropene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
1,3-Dichloropropane	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
cis-1,3-Dichloropropene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
trans-1,3-Dichloropropene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
2,2-Dichloropropane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Di-isopropyl ether	ND		0.00267	1.58	08/25/2021 17:59	<u>WG1729245</u>	
Ethylbenzene	ND		0.00668	1.58	08/25/2021 17:59	<u>WG1729245</u>	
Hexachloro-1,3-butadiene	ND		0.0668	1.58	08/25/2021 17:59	WG1729245	
sopropylbenzene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
p-lsopropyltoluene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
2-Butanone (MEK)	ND		0.267	1.58	08/25/2021 17:59	WG1729245	
lethylene Chloride	ND		0.0668	1.58	08/25/2021 17:59	WG1729245	
I-Methyl-2-pentanone (MIBK)	ND		0.0668	1.58	08/25/2021 17:59	WG1729245	
Methyl tert-butyl ether	ND		0.00267	1.58	08/25/2021 17:59	WG1729245	
laphthalene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
-Propylbenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
tyrene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
,1,1,2-Tetrachloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
,1,2,2-Tetrachloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
,1,2-Trichlorotrifluoroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
etrachloroethene	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
Foluene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
,2,3-Trichlorobenzene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
,2,4-Trichlorobenzene	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
,1,1-Trichloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
,1,2-Trichloroethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
richloroethene	ND		0.00267	1.58	08/25/2021 17:59	WG1729245	
richlorofluoromethane	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
l,2,3-Trichloropropane	ND		0.0335	1.58	08/25/2021 17:59	WG1729245	
,2,4-Trimethylbenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
,2,3-Trimethylbenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
/inyl chloride	ND		0.00668	1.58	08/25/2021 17:59	WG1729245	
,3,5-Trimethylbenzene	ND		0.0134	1.58	08/25/2021 17:59	WG1729245	
(ylenes, Total	ND		0.0174	1.58	08/25/2021 17:59	WG1729245	
(S) Toluene-d8	102		75.0-131		08/25/2021 17:59	WG1729245	
(S) 4-Bromofluorobenzene	91.7		67.0-138		08/25/2021 17:59	WG1729245	
(S) 1,2-Dichloroethane-d4	88.4		70.0-130		08/25/2021 17:59	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.69	1	08/31/2021 19:45	<u>WG1731367</u>
Residual Range Organics (RRO)	ND		14.2	1	08/31/2021 19:45	<u>WG1731367</u>
(S) o-Terphenyl	53.0		18.0-148		08/31/2021 19:45	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/2116:09

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Ср
			0.0474	1	08/26/2021 12:52	WC1720225	2_
Acenaphthene	ND		0.0474	1		WG1729325	Ťτ
Acenaphthylene	ND			1	08/26/2021 12:52	WG1729325	
Anthracene	ND		0.0474	1	08/26/2021 12:52	WG1729325	³ Ss
Benzidine	ND		2.38	1	08/26/2021 12:52	WG1729325	
Benzo(a)anthracene	ND		0.0474	1	08/26/2021 12:52	<u>WG1729325</u>	4
Benzo(b)fluoranthene	ND		0.0474	1	08/26/2021 12:52	<u>WG1729325</u>	[↑] Cr
Benzo(k)fluoranthene	ND		0.0474	1	08/26/2021 12:52	WG1729325	
Benzo(g,h,i)perylene	ND		0.0474	1	08/26/2021 12:52	WG1729325	5
Benzo(a)pyrene	ND		0.0474	1	08/26/2021 12:52	WG1729325	⁵Sr
Bis(2-chlorethoxy)methane	ND		0.474	1	08/26/2021 12:52	WG1729325	
Bis(2-chloroethyl)ether	ND		0.474	1	08/26/2021 12:52	WG1729325	⁶ Qo
2,2-Oxybis(1-Chloropropane)	ND		0.474	1	08/26/2021 12:52	WG1729325	
4-Bromophenyl-phenylether	ND		0.474	1	08/26/2021 12:52	WG1729325	7
2-Chloronaphthalene	ND		0.0474	1	08/26/2021 12:52	WG1729325	Í GI
4-Chlorophenyl-phenylether	ND		0.474	1	08/26/2021 12:52	WG1729325	
Chrysene	ND		0.0474	1	08/26/2021 12:52	WG1729325	8
Dibenz(a,h)anthracene	ND		0.0474	1	08/26/2021 12:52	WG1729325	ĨAĨ
1,2-Dichlorobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325	
1,3-Dichlorobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325 WG1729325	Sc
1,4-Dichlorobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325 WG1729325	
3,3-Dichlorobenzidine	ND		0.474	1	08/26/2021 12:52	WG1729325	
2,4-Dinitrotoluene	ND		0.474	1	08/26/2021 12:52	WG1729325	
2,6-Dinitrotoluene	ND		0.474	1	08/26/2021 12:52	<u>WG1729325</u>	
Fluoranthene	ND		0.0474	1	08/26/2021 12:52	<u>WG1729325</u>	
Fluorene	ND		0.0474	1	08/26/2021 12:52	WG1729325	
Hexachlorobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325	
Hexachloro-1,3-butadiene	ND		0.474	1	08/26/2021 12:52	WG1729325	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.474	1	08/26/2021 12:52	WG1729325	
Hexachloroethane	ND		0.474	1	08/26/2021 12:52	WG1729325	
Indeno(1,2,3-cd)pyrene	ND		0.0474	1	08/26/2021 12:52	WG1729325	
Isophorone	ND		0.474	1	08/26/2021 12:52	WG1729325	
Naphthalene	ND		0.0474	1	08/26/2021 12:52	WG1729325	
Nitrobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325	
n-Nitrosodimethylamine	ND		0.474	1	08/26/2021 12:52	WG1729325	
n-Nitrosodiphenylamine	ND		0.474	1	08/26/2021 12:52	WG1729325	
n-Nitrosodi-n-propylamine	ND		0.474	1	08/26/2021 12:52	WG1729325	
Phenanthrene	ND		0.0474	1	08/26/2021 12:52	WG1729325	
Benzylbutyl phthalate	ND		0.474	1	08/26/2021 12:52	WG1729325	
			0.474		08/26/2021 12:52		
Bis(2-ethylhexyl)phthalate	ND			1		WG1729325	
Di-n-butyl phthalate	ND		0.474	1	08/26/2021 12:52	WG1729325	
Diethyl phthalate	ND		0.474	1	08/26/2021 12:52	WG1729325	
Dimethyl phthalate	ND		0.474	1	08/26/2021 12:52	WG1729325	
Di-n-octyl phthalate	ND		0.474	1	08/26/2021 12:52	<u>WG1729325</u>	
Pyrene	ND		0.0474	1	08/26/2021 12:52	<u>WG1729325</u>	
1,2,4-Trichlorobenzene	ND		0.474	1	08/26/2021 12:52	WG1729325	
4-Chloro-3-methylphenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
2-Chlorophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
2,4-Dichlorophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
2,4-Dimethylphenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
4,6-Dinitro-2-methylphenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
2,4-Dinitrophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
2-Nitrophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
4-Nitrophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
Pentachlorophenol	ND		0.474	1	08/26/2021 12:52	WG1729325	
Phenol	ND		0.474		08/26/2021 12:52		
				1		WG1729325	
2,4,6-Trichlorophenol	ND		0.474	1	08/26/202112:52	WG1729325	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIOU SDG: L1393384

I

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

			-				1
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	C C
Analyte	mg/kg		mg/kg		date / time		
(S) 2-Fluorophenol	48.6		12.0-120		08/26/2021 12:52	<u>WG1729325</u>	^{2}Tc
(S) Phenol-d5	43.9		10.0-120		08/26/2021 12:52	<u>WG1729325</u>	
(S) Nitrobenzene-d5	48.3		10.0-122		08/26/2021 12:52	<u>WG1729325</u>	3
(S) 2-Fluorobiphenyl	51.1		15.0-120		08/26/2021 12:52	<u>WG1729325</u>	Ss
(S) 2,4,6-Tribromophenol	55.0		10.0-127		08/26/2021 12:52	<u>WG1729325</u>	
(S) p-Terphenyl-d14	46.2		10.0-120		08/26/2021 12:52	<u>WG1729325</u>	4 Cr

Qc

GI

Â

Collected date/time: 08/17/21 15:40

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	73.0		1	08/30/2021 09:25	WG1730124	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0548	1	08/25/2021 19:28	WG1729091

Metals (ICP) by Method 6010D

	D N (1)	0 110		D H H	• • •	5
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.74	1	08/26/2021 09:49	WG1728695
Barium	170		0.685	1	08/26/2021 09:49	WG1728695
Cadmium	ND		0.685	1	08/26/2021 09:49	WG1728695
Chromium	18.7		1.37	1	08/26/2021 09:49	WG1728695
ead	1.20		0.685	1	08/26/2021 09:49	WG1728695
elenium	ND		2.74	1	08/27/2021 06:50	WG1728695
Silver	ND		1.37	1	08/26/2021 09:49	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		7.54	48.3	08/26/2021 06:44	WG1729501
(S) a,a,a-Trifluorotoluene(FID)	114		77.0-120		08/26/2021 06:44	WG1729501

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.149	1.91	08/25/2021 18:18	<u>WG1729245</u>	
Acrylonitrile	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
Benzene	ND		0.00298	1.91	08/25/2021 18:18	WG1729245	
Bromobenzene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
Bromodichloromethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Bromoform	ND		0.0747	1.91	08/25/2021 18:18	WG1729245	
Bromomethane	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
n-Butylbenzene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
sec-Butylbenzene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
tert-Butylbenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Carbon tetrachloride	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Chlorobenzene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Chlorodibromomethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Chloroethane	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Chloroform	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Chloromethane	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
2-Chlorotoluene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
4-Chlorotoluene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0747	1.91	08/25/2021 18:18	WG1729245	
1,2-Dibromoethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Dibromomethane	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,2-Dichlorobenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,3-Dichlorobenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,4-Dichlorobenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Dichlorodifluoromethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,1-Dichloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,2-Dichloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
ACCOUN	T:		PROJEC	CT:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

PAGE: 23 of 72

1

Ss

Cn

Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⊢
1,1-Dichloroethene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	2
cis-1,2-Dichloroethene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
trans-1,2-Dichloroethene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	3
1,2-Dichloropropane	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	3
1,1-Dichloropropene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,3-Dichloropropane	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	4
cis-1,3-Dichloropropene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
trans-1,3-Dichloropropene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	5
2,2-Dichloropropane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Di-isopropyl ether	ND		0.00298	1.91	08/25/2021 18:18	WG1729245	
Ethylbenzene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	6
Hexachloro-1,3-butadiene	ND		0.0747	1.91	08/25/2021 18:18	WG1729245	
Isopropylbenzene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	7
p-Isopropyltoluene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	ľ
2-Butanone (MEK)	ND		0.298	1.91	08/25/2021 18:18	WG1729245	
Methylene Chloride	ND		0.0747	1.91	08/25/2021 18:18	WG1729245	8
4-Methyl-2-pentanone (MIBK)	ND		0.0747	1.91	08/25/2021 18:18	WG1729245	
Methyl tert-butyl ether	ND		0.00298	1.91	08/25/2021 18:18	WG1729245	9
Naphthalene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	5
n-Propylbenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	L
Styrene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
1,1,1,2-Tetrachloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,1,2,2-Tetrachloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Tetrachloroethene	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Toluene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,2,3-Trichlorobenzene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
1,1,1-Trichloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,1,2-Trichloroethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
Trichloroethene	ND		0.00298	1.91	08/25/2021 18:18	WG1729245	
Trichlorofluoromethane	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,2,3-Trichloropropane	ND		0.0373	1.91	08/25/2021 18:18	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
1,2,3-Trimethylbenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Vinyl chloride	ND		0.00747	1.91	08/25/2021 18:18	WG1729245	
1,3,5-Trimethylbenzene	ND		0.0149	1.91	08/25/2021 18:18	WG1729245	
Xylenes, Total	ND		0.0194	1.91	08/25/2021 18:18	WG1729245	
(S) Toluene-d8	100		75.0-131		08/25/2021 18:18	WG1729245	
(S) 4-Bromofluorobenzene	91.1		67.0-138		08/25/2021 18:18	WG1729245	
(S) 1,2-Dichloroethane-d4	88.1		70.0-130		08/25/2021 18:18	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.48	1	08/31/2021 17:17	<u>WG1731367</u>
Residual Range Organics (RRO)	ND		13.7	1	08/31/2021 17:17	<u>WG1731367</u>
(S) o-Terphenyl	32.5		18.0-148		08/31/2021 17:17	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/2116:09

Collected date/time: 08/17/21 15:40

SAMPLE RESULTS - 05

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Cŗ
Acenaphthene	ND		0.0456	1	08/26/2021 12:31	WG1729325	2 Tc
Acenaphthylene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Anthracene	ND		0.0456	1	08/26/2021 12:31	WG1729325	3
Benzidine	ND		2.29	1	08/26/2021 12:31	WG1729325	[°] Ss
Benzo(a)anthracene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Benzo(b)fluoranthene	ND		0.0456	1	08/26/2021 12:31	WG1729325	⁴ Cr
Benzo(k)fluoranthene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Benzo(g,h,i)perylene	ND		0.0456	1	08/26/2021 12:31	WG1729325	5
Benzo(a)pyrene	ND		0.0456	1	08/26/2021 12:31	WG1729325	ຶSr
Bis(2-chlorethoxy)methane	ND		0.456	1	08/26/2021 12:31	WG1729325	
Bis(2-chloroethyl)ether	ND		0.456	1	08/26/2021 12:31	WG1729325	6
2,2-Oxybis(1-Chloropropane)	ND		0.456	1	08/26/2021 12:31	WG1729325	ĨQ
4-Bromophenyl-phenylether	ND		0.456	1	08/26/2021 12:31	WG1729325	7
2-Chloronaphthalene	ND		0.0456	1	08/26/2021 12:31	WG1729325	Í GI
4-Chlorophenyl-phenylether	ND		0.456	1	08/26/2021 12:31	WG1729325	
Chrysene	ND		0.0456	1	08/26/2021 12:31	WG1729325	8
Dibenz(a,h)anthracene	ND		0.0456	1	08/26/2021 12:31	WG1729325	Ă
1,2-Dichlorobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325	
1,3-Dichlorobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325 WG1729325	°So
1,4-Dichlorobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325 WG1729325	
3,3-Dichlorobenzidine	ND		0.456	1	08/26/2021 12:31	WG1729325 WG1729325	
2,4-Dinitrotoluene	ND		0.456	1			
					08/26/2021 12:31	WG1729325	
2,6-Dinitrotoluene	ND		0.456	1	08/26/2021 12:31	WG1729325	
Fluoranthene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Fluorene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Hexachlorobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325	
Hexachloro-1,3-butadiene	ND		0.456	1	08/26/2021 12:31	WG1729325	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.456	1	08/26/2021 12:31	WG1729325	
Hexachloroethane	ND		0.456	1	08/26/2021 12:31	WG1729325	
Indeno(1,2,3-cd)pyrene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Isophorone	ND		0.456	1	08/26/2021 12:31	<u>WG1729325</u>	
Naphthalene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Nitrobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325	
n-Nitrosodimethylamine	ND		0.456	1	08/26/2021 12:31	WG1729325	
n-Nitrosodiphenylamine	ND		0.456	1	08/26/2021 12:31	WG1729325	
n-Nitrosodi-n-propylamine	ND		0.456	1	08/26/2021 12:31	WG1729325	
Phenanthrene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
Benzylbutyl phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Bis(2-ethylhexyl)phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Di-n-butyl phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Diethyl phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Dimethyl phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Di-n-octyl phthalate	ND		0.456	1	08/26/2021 12:31	WG1729325	
Pyrene	ND		0.0456	1	08/26/2021 12:31	WG1729325	
1,2,4-Trichlorobenzene	ND		0.456	1	08/26/2021 12:31	WG1729325	
4-Chloro-3-methylphenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2-Chlorophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2,4-Dichlorophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2,4-Dimethylphenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
4,6-Dinitro-2-methylphenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2,4-Dinitrophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2-Nitrophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
4-Nitrophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
Pentachlorophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
Phenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
2,4,6-Trichlorophenol	ND		0.456	1	08/26/2021 12:31	WG1729325	
z, i,o menorophenoi	nu		0.100	1	00/20/2021 12.JT	101/20020	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIOU SDG: L1393384

0

PAGE: 25 of 72

Collected date/time: 08/17/21 15:40

SAMPLE RESULTS - 05

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
inalyte	mg/kg		mg/kg		date / time		
(S) 2-Fluorophenol	39.9		12.0-120		08/26/2021 12:31	WG1729325	
(S) Phenol-d5	38.7		10.0-120		08/26/2021 12:31	WG1729325	
(S) Nitrobenzene-d5	45.3		10.0-122		08/26/2021 12:31	WG1729325	
(S) 2-Fluorobiphenyl	43.7		15.0-120		08/26/2021 12:31	WG1729325	
(S) 2,4,6-Tribromophenol	48.9		10.0-127		08/26/2021 12:31	WG1729325	
(S) p-Terphenyl-d14	46.2		10.0-120		08/26/2021 12:31	WG1729325	

Qc

GI

Â

Collected date/time: 08/17/21 14:00

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	74.5		1	08/30/2021 09:25	WG1730124	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0537	1	08/25/2021 19:35	WG1729091

Metals (ICP) by Method 6010D

	Pocult (dp)	Qualifier	PDL (dp)	Dilution	Analysis	Patch
America	Result (dry)	Qualifier	RDL (dry)	Dilution	,	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.68	1	08/26/2021 09:52	WG1728695
Barium	195		0.671	1	08/26/2021 09:52	WG1728695
Cadmium	ND		0.671	1	08/26/2021 09:52	WG1728695
Chromium	17.4		1.34	1	08/26/2021 09:52	WG1728695
Lead	14.0		0.671	1	08/26/2021 09:52	WG1728695
Selenium	ND		2.68	1	08/27/2021 06:53	WG1728695
Silver	ND		1.34	1	08/26/2021 09:52	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		7.83	52	08/26/2021 07:06	WG1729501
(S) a,a,a-Trifluorotoluene(FID)	112		77.0-120		08/26/2021 07:06	WG1729501

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.163	2.17	08/25/2021 18:37	WG1729245	
Acrylonitrile	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
Benzene	ND		0.00325	2.17	08/25/2021 18:37	WG1729245	
Bromobenzene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
Bromodichloromethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Bromoform	ND		0.0814	2.17	08/25/2021 18:37	WG1729245	
Bromomethane	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
n-Butylbenzene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
sec-Butylbenzene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
tert-Butylbenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
Carbon tetrachloride	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
Chlorobenzene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Chlorodibromomethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Chloroethane	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
Chloroform	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Chloromethane	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
2-Chlorotoluene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
4-Chlorotoluene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0814	2.17	08/25/2021 18:37	WG1729245	
1,2-Dibromoethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Dibromomethane	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
1,2-Dichlorobenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
1,3-Dichlorobenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
1,4-Dichlorobenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
Dichlorodifluoromethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,1-Dichloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,2-Dichloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
ACCOUN	T:		PROJEC	:T:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

L1393384

DATE/TIME: 09/03/21 16:09

1

Ss

Cn

Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		¦
1,1-Dichloroethene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
cis-1,2-Dichloroethene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
trans-1,2-Dichloroethene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	E.
1,2-Dichloropropane	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
1,1-Dichloropropene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,3-Dichloropropane	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
cis-1,3-Dichloropropene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
trans-1,3-Dichloropropene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
2,2-Dichloropropane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Di-isopropyl ether	ND		0.00325	2.17	08/25/2021 18:37	WG1729245	
Ethylbenzene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Hexachloro-1,3-butadiene	ND		0.0814	2.17	08/25/2021 18:37	WG1729245	
lsopropylbenzene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	ſ
p-lsopropyltoluene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
2-Butanone (MEK)	ND		0.325	2.17	08/25/2021 18:37	WG1729245	Ļ
Methylene Chloride	ND		0.0814	2.17	08/25/2021 18:37	WG1729245	
1-Methyl-2-pentanone (MIBK)	ND		0.0814	2.17	08/25/2021 18:37	WG1729245	
Methyl tert-butyl ether	ND		0.00325	2.17	08/25/2021 18:37	WG1729245	[
Naphthalene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
n-Propylbenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	L
Styrene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
I,1,1,2-Tetrachloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,1,2,2-Tetrachloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Tetrachloroethene	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Toluene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
I,2,3-Trichlorobenzene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
1,1,1-Trichloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,1,2-Trichloroethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
Trichloroethene	ND		0.00325	2.17	08/25/2021 18:37	WG1729245	
Trichlorofluoromethane	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
1,2,3-Trichloropropane	ND		0.0406	2.17	08/25/2021 18:37	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
I,2,3-Trimethylbenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
/inyl chloride	ND		0.00814	2.17	08/25/2021 18:37	WG1729245	
I,3,5-Trimethylbenzene	ND		0.0163	2.17	08/25/2021 18:37	WG1729245	
Kylenes, Total	ND		0.0211	2.17	08/25/2021 18:37	WG1729245	
(S) Toluene-d8	99.9		75.0-131		08/25/2021 18:37	WG1729245	
(S) 4-Bromofluorobenzene	93.5		67.0-138		08/25/2021 18:37	WG1729245	
(S) 1,2-Dichloroethane-d4	86.6		70.0-130		08/25/2021 18:37	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.37	1	08/31/2021 19:32	<u>WG1731367</u>
Residual Range Organics (RRO)	ND		13.4	1	08/31/2021 19:32	<u>WG1731367</u>
(S) o-Terphenyl	51.7		18.0-148		08/31/2021 19:32	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 14:00

SAMPLE RESULTS - 06

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Cp
Acenaphthene	ND		0.0447	1	08/26/2021 13:13	WG1729325	² Tc
Acenaphthylene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Anthracene	ND		0.0447	1	08/26/2021 13:13	WG1729325	2
Benzidine	ND		2.24	1	08/26/2021 13:13	WG1729325	ໍSs
Benzo(a)anthracene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Benzo(b)fluoranthene	ND		0.0447	1	08/26/2021 13:13	WG1729325	4
Benzo(k)fluoranthene	ND		0.0447	1	08/26/2021 13:13	WG1729325	Cr
Benzo(g,h,i)perylene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Benzo(a)pyrene	ND		0.0447	1	08/26/2021 13:13	WG1729325	⁵Sr
Bis(2-chlorethoxy)methane	ND		0.447	1	08/26/2021 13:13	WG1729325	
	ND		0.447	1			6
Bis(2-chloroethyl)ether					08/26/2021 13:13	WG1729325	ČQC
2,2-Oxybis(1-Chloropropane)	ND		0.447	1	08/26/2021 13:13	WG1729325	
4-Bromophenyl-phenylether	ND		0.447	1	08/26/2021 13:13	WG1729325	⁷ Gl
2-Chloronaphthalene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
4-Chlorophenyl-phenylether	ND		0.447	1	08/26/2021 13:13	WG1729325	0
Chrysene	ND		0.0447	1	08/26/2021 13:13	WG1729325	Å
Dibenz(a,h)anthracene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
1,2-Dichlorobenzene	ND		0.447	1	08/26/2021 13:13	<u>WG1729325</u>	9
1,3-Dichlorobenzene	ND		0.447	1	08/26/2021 13:13	WG1729325	ຶSc
1,4-Dichlorobenzene	ND		0.447	1	08/26/2021 13:13	WG1729325	
3,3-Dichlorobenzidine	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,4-Dinitrotoluene	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,6-Dinitrotoluene	ND		0.447	1	08/26/2021 13:13	WG1729325	
Fluoranthene	ND		0.0447	1	08/26/2021 13:13	<u>WG1729325</u>	
Fluorene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Hexachlorobenzene	ND		0.447	1	08/26/2021 13:13	WG1729325	
Hexachloro-1,3-butadiene	ND		0.447	1	08/26/2021 13:13	WG1729325	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.447	1	08/26/2021 13:13	WG1729325	
Hexachloroethane	ND	_	0.447	1	08/26/2021 13:13	WG1729325	
Indeno(1,2,3-cd)pyrene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Isophorone	ND		0.447	1	08/26/2021 13:13	WG1729325	
Naphthalene	ND		0.0447	1	08/26/2021 13:13	WG1729325	
Nitrobenzene	ND		0.447	1	08/26/2021 13:13	WG1729325	
n-Nitrosodimethylamine	ND		0.447	1	08/26/2021 13:13	WG1729325	
				1	08/26/2021 13:13		
n-Nitrosodiphenylamine n-Nitrosodi-n-propylamine	ND ND		0.447	1	08/26/2021 13:13	<u>WG1729325</u> WG1729325	
Phenanthrene	ND		0.0447		08/26/2021 13:13		
				1		WG1729325	
Benzylbutyl phthalate	ND		0.447	1	08/26/2021 13:13	WG1729325	
Bis(2-ethylhexyl)phthalate	ND		0.447	1	08/26/2021 13:13	WG1729325	
Di-n-butyl phthalate	ND		0.447	1	08/26/2021 13:13	WG1729325	
Diethyl phthalate	ND		0.447	1	08/26/2021 13:13	WG1729325	
Dimethyl phthalate	ND		0.447	1	08/26/2021 13:13	<u>WG1729325</u>	
Di-n-octyl phthalate	ND		0.447	1	08/26/2021 13:13	<u>WG1729325</u>	
Pyrene	ND		0.0447	1	08/26/2021 13:13	<u>WG1729325</u>	
1,2,4-Trichlorobenzene	ND		0.447	1	08/26/2021 13:13	WG1729325	
4-Chloro-3-methylphenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2-Chlorophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,4-Dichlorophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,4-Dimethylphenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
4,6-Dinitro-2-methylphenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,4-Dinitrophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2-Nitrophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
4-Nitrophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
Pentachlorophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
Phenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,4,6-Trichlorophenol	ND		0.447	1	08/26/2021 13:13	WG1729325	
2,7,0-1101000000	ND		0.447	1	00/20/2021 13.13	W01/23323	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIOU SDG: L1393384

1

PAGE: 29 of 72

Collected date/time: 08/17/21 14:00

SAMPLE RESULTS - 06

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		I
(S) 2-Fluorophenol	42.2		12.0-120		08/26/2021 13:13	<u>WG1729325</u>	
(S) Phenol-d5	39.1		10.0-120		08/26/2021 13:13	<u>WG1729325</u>	
(S) Nitrobenzene-d5	48.3		10.0-122		08/26/2021 13:13	WG1729325	
(S) 2-Fluorobiphenyl	48.9		15.0-120		08/26/2021 13:13	<u>WG1729325</u>	
(S) 2,4,6-Tribromophenol	47.5		10.0-127		08/26/2021 13:13	WG1729325	
(S) p-Terphenyl-d14	42.5		10.0-120		08/26/2021 13:13	<u>WG1729325</u>	

Qc

GI

Â

Total Solids by Method 2540 G-2011

	Result	Qualifier D	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	71.6	1		08/30/2021 09:25	WG1730124	¯Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0558	1	08/25/2021 19:38	<u>WG1729091</u>

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	DDL (dm)	Dilution	Analysis	Datab
		Qualifier	RDL (dry)	Dilution	,	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.79	1	08/26/2021 08:51	WG1728695
Barium	182		0.698	1	08/26/2021 08:51	WG1728695
Cadmium	ND		0.698	1	08/26/2021 08:51	WG1728695
Chromium	18.0		1.40	1	08/26/2021 08:51	WG1728695
Lead	119		0.698	1	08/26/2021 08:51	WG1728695
Selenium	ND		2.79	1	08/27/2021 06:10	WG1728695
Silver	ND		1.40	1	08/26/2021 08:51	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		7.27	45	08/26/2021 08:32	WG1729501
(S) a,a,a-Trifluorotoluene(FID)	112		77.0-120		08/26/2021 08:32	WG1729501

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.143	1.77	08/25/2021 18:57	WG1729245	
Acrylonitrile	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
Benzene	ND		0.00287	1.77	08/25/2021 18:57	WG1729245	
Bromobenzene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
Bromodichloromethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Bromoform	ND		0.0717	1.77	08/25/2021 18:57	WG1729245	
Bromomethane	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
n-Butylbenzene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
sec-Butylbenzene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
tert-Butylbenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Carbon tetrachloride	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Chlorobenzene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Chlorodibromomethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Chloroethane	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Chloroform	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Chloromethane	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
2-Chlorotoluene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
4-Chlorotoluene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0717	1.77	08/25/2021 18:57	WG1729245	
1,2-Dibromoethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Dibromomethane	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,2-Dichlorobenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,3-Dichlorobenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,4-Dichlorobenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Dichlorodifluoromethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,1-Dichloroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,2-Dichloroethane	ND		0.00717	1.77	08/25/2021 18:57	<u>WG1729245</u>	
ACCOUN	T:		PROJEC	:Т:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

CHILOQIOU

L1393384

DAT

Ss

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	- C
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	2 T
cis-1,2-Dichloroethene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
trans-1,2-Dichloroethene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	3
1,2-Dichloropropane	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	۳S
1,1-Dichloropropene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,3-Dichloropropane	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	⁴ C
cis-1,3-Dichloropropene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	Ľ
trans-1,3-Dichloropropene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	5_
2,2-Dichloropropane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	ິS
Di-isopropyl ether	ND		0.00287	1.77	08/25/2021 18:57	WG1729245	
Ethylbenzene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	⁶ Q
Hexachloro-1,3-butadiene	ND		0.0717	1.77	08/25/2021 18:57	WG1729245	Ľ
Isopropylbenzene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	7
p-Isopropyltoluene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	Ĝ
2-Butanone (MEK)	ND		0.287	1.77	08/25/2021 18:57	WG1729245	
Methylene Chloride	ND		0.0717	1.77	08/25/2021 18:57	WG1729245	8 A
4-Methyl-2-pentanone (MIBK)	ND		0.0717	1.77	08/25/2021 18:57	WG1729245	
Methyl tert-butyl ether	ND		0.00287	1.77	08/25/2021 18:57	WG1729245	9
Naphthalene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	ſS
n-Propylbenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Styrene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
1,1,1,2-Tetrachloroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,1,2,2-Tetrachloroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Tetrachloroethene	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Toluene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,2,3-Trichlorobenzene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
1,1,1-Trichloroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,1,2-Trichloroethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
Trichloroethene	ND		0.00287	1.77	08/25/2021 18:57	WG1729245	
Trichlorofluoromethane	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,2,3-Trichloropropane	ND		0.0358	1.77	08/25/2021 18:57	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
1,2,3-Trimethylbenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Vinyl chloride	ND		0.00717	1.77	08/25/2021 18:57	WG1729245	
1,3,5-Trimethylbenzene	ND		0.0143	1.77	08/25/2021 18:57	WG1729245	
Xylenes, Total	ND		0.0186	1.77	08/25/2021 18:57	WG1729245	
(S) Toluene-d8	99.6		75.0-131		08/25/2021 18:57	WG1729245	
(S) 4-Bromofluorobenzene	92.3		67.0-138		08/25/2021 18:57	WG1729245	
(S) 1,2-Dichloroethane-d4	89.0		70.0-130		08/25/2021 18:57	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	13.0		5.58	1	09/02/2021 14:36	<u>WG1731367</u>
Residual Range Organics (RRO)	75.1		14.0	1	09/02/2021 14:36	<u>WG1731367</u>
(S) o-Terphenyl	39.0		18.0-148		09/02/2021 14:36	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		.
Acenaphthene	ND		0.0465	1	08/29/2021 01:36	<u>WG1730358</u>	² Tc
Acenaphthylene	ND		0.0465	1	08/29/2021 01:36	<u>WG1730358</u>	
Anthracene	ND		0.0465	1	08/29/2021 01:36	<u>WG1730358</u>	3
Benzidine	ND		2.33	1	08/29/2021 01:36	WG1730358	ຶSs
Benzo(a)anthracene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Benzo(b)fluoranthene	ND		0.0465	1	08/29/2021 01:36	WG1730358	⁴ Cr
Benzo(k)fluoranthene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Benzo(g,h,i)perylene	ND		0.0465	1	08/29/2021 01:36	WG1730358	5
Benzo(a)pyrene	ND		0.0465	1	08/29/2021 01:36	WG1730358	⁵Sr
Bis(2-chlorethoxy)methane	ND		0.465	1	08/29/2021 01:36	WG1730358	
Bis(2-chloroethyl)ether	ND		0.465	1	08/29/2021 01:36	WG1730358	6
2,2-Oxybis(1-Chloropropane)	ND		0.465	1	08/29/2021 01:36	WG1730358	Q
4-Bromophenyl-phenylether	ND		0.465	1	08/29/2021 01:36	WG1730358	
2-Chloronaphthalene	ND		0.0465	1	08/29/2021 01:36	WG1730358	⁷ Gl
4-Chlorophenyl-phenylether	ND		0.465	1	08/29/2021 01:36	WG1730358	8
Chrysene	ND		0.0465	1	08/29/2021 01:36	WG1730358	Ă
Dibenz(a,h)anthracene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
1,2-Dichlorobenzene	ND		0.465	1	08/29/2021 01:36	WG1730358	9
1,3-Dichlorobenzene	ND		0.465	1	08/29/2021 01:36	WG1730358	ິSc
1,4-Dichlorobenzene	ND		0.465	1	08/29/2021 01:36	WG1730358	
3,3-Dichlorobenzidine	ND		0.465	1	08/29/2021 01:36	<u>WG1730358</u>	
2,4-Dinitrotoluene	ND		0.465	1	08/29/2021 01:36	WG1730358	
2,6-Dinitrotoluene	ND		0.465	1	08/29/2021 01:36	WG1730358	
Fluoranthene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Fluorene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Hexachlorobenzene	ND		0.465	1	08/29/2021 01:36	WG1730358	
Hexachloro-1,3-butadiene	ND		0.465	1	08/29/2021 01:36	WG1730358	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.465	1	08/29/2021 01:36	WG1730358	
Hexachloroethane	ND		0.465	1	08/29/2021 01:36	WG1730358	
Indeno(1,2,3-cd)pyrene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Isophorone	ND		0.465	1	08/29/2021 01:36	WG1730358	
Naphthalene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
Nitrobenzene	ND		0.465	1	08/29/2021 01:36		
			0.465	1	08/29/2021 01:36	WG1730358	
n-Nitrosodimethylamine	ND					WG1730358	
n-Nitrosodiphenylamine	ND		0.465	1	08/29/2021 01:36	WG1/30358	
n-Nitrosodi-n-propylamine	ND		0.465	1	08/29/2021 01:36	WG1730358	
Phenanthrene	ND		0.0465	1	08/29/2021 01:36	<u>WG1730358</u>	
Benzylbutyl phthalate	ND		0.465	1	08/29/2021 01:36	<u>WG1730358</u>	
Bis(2-ethylhexyl)phthalate	ND		0.465	1	08/29/2021 01:36	<u>WG1730358</u>	
Di-n-butyl phthalate	ND		0.465	1	08/29/2021 01:36	WG1730358	
Diethyl phthalate	ND		0.465	1	08/29/2021 01:36	<u>WG1730358</u>	
Dimethyl phthalate	ND		0.465	1	08/29/2021 01:36	WG1730358	
Di-n-octyl phthalate	ND		0.465	1	08/29/2021 01:36	WG1730358	
Pyrene	ND		0.0465	1	08/29/2021 01:36	WG1730358	
1,2,4-Trichlorobenzene	ND		0.465	1	08/29/2021 01:36	WG1730358	
4-Chloro-3-methylphenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
2-Chlorophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
2,4-Dichlorophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
2,4-Dimethylphenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
4,6-Dinitro-2-methylphenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
2,4-Dinitrophenol	ND		0.465	1	08/29/2021 01:30	WG1730358	
·							
2-Nitrophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
4-Nitrophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
Pentachlorophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	
Phenol	ND		0.465	1	08/29/2021 01:36	<u>W61730358</u>	
2,4,6-Trichlorophenol	ND		0.465	1	08/29/2021 01:36	WG1730358	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIOU SDG: L1393384

0

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
(S) 2-Fluorophenol	43.8		12.0-120		08/29/2021 01:36	WG1730358	
(S) Phenol-d5	45.1		10.0-120		08/29/2021 01:36	WG1730358	
(S) Nitrobenzene-d5	43.1		10.0-122		08/29/2021 01:36	WG1730358	
(S) 2-Fluorobiphenyl	44.6		15.0-120		08/29/2021 01:36	WG1730358	
(S) 2,4,6-Tribromophenol	54.5		10.0-127		08/29/2021 01:36	WG1730358	
(S) p-Terphenyl-d14	58.8		10.0-120		08/29/2021 01:36	WG1730358	

Qc

GI

Â

Collected date/time: 08/17/21 10:00

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		79.2		1	08/30/2021 09:25	WG1730124	¯Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.0536		0.0505	1	08/25/2021 19:40	WG1729091

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		ČQC
Arsenic	ND		2.53	1	08/26/2021 09:55	WG1728695	
Barium	183		0.631	1	08/26/2021 09:55	WG1728695	⁷ Gl
Cadmium	ND		0.631	1	08/26/2021 09:55	WG1728695	
Chromium	13.9		1.26	1	08/26/2021 09:55	WG1728695	8
Lead	54.1		0.631	1	08/26/2021 09:55	WG1728695	Ă
Selenium	ND		2.53	1	08/27/2021 06:56	WG1728695	
Silver	ND		1.26	1	08/26/2021 09:55	WG1728695	⁹ Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		7.79	56.5	08/26/2021 08:54	WG1729501
(S) a,a,a-Trifluorotoluene(FID)	113		77.0-120		08/26/2021 08:54	WG1729501

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.151	2.18	08/25/2021 19:16	WG1729245	
Acrylonitrile	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
Benzene	ND		0.00302	2.18	08/25/2021 19:16	WG1729245	
Bromobenzene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
Bromodichloromethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Bromoform	ND		0.0754	2.18	08/25/2021 19:16	WG1729245	
Bromomethane	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
n-Butylbenzene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
sec-Butylbenzene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
tert-Butylbenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Carbon tetrachloride	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Chlorobenzene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Chlorodibromomethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Chloroethane	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Chloroform	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Chloromethane	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
2-Chlorotoluene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
4-Chlorotoluene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0754	2.18	08/25/2021 19:16	WG1729245	
1,2-Dibromoethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Dibromomethane	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,2-Dichlorobenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,3-Dichlorobenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,4-Dichlorobenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Dichlorodifluoromethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,1-Dichloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,2-Dichloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
ACCOUN	т·		PROJEC	т.	SDG:	DATE/TIME:	PA

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

²Ss ²Cn ²Sr ²Qc ²Gl

1

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
cis-1,2-Dichloroethene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
trans-1,2-Dichloroethene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,2-Dichloropropane	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,1-Dichloropropene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,3-Dichloropropane	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
cis-1,3-Dichloropropene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
trans-1,3-Dichloropropene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
2,2-Dichloropropane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Di-isopropyl ether	ND		0.00302	2.18	08/25/2021 19:16	WG1729245	
Ethylbenzene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Hexachloro-1,3-butadiene	ND		0.0754	2.18	08/25/2021 19:16	WG1729245	
Isopropylbenzene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
p-lsopropyltoluene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
2-Butanone (MEK)	ND		0.302	2.18	08/25/2021 19:16	WG1729245	
Methylene Chloride	ND		0.0754	2.18	08/25/2021 19:16	WG1729245	
4-Methyl-2-pentanone (MIBK)	ND		0.0754	2.18	08/25/2021 19:16	WG1729245	
Methyl tert-butyl ether	ND		0.00302	2.18	08/25/2021 19:16	WG1729245	
Naphthalene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
n-Propylbenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Styrene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
I,1,1,2-Tetrachloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,1,2,2-Tetrachloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Tetrachloroethene	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Toluene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,2,3-Trichlorobenzene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
1,1,1-Trichloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,1,2-Trichloroethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
Trichloroethene	ND		0.00302	2.18	08/25/2021 19:16	WG1729245	
Trichlorofluoromethane	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,2,3-Trichloropropane	ND		0.0378	2.18	08/25/2021 19:16	WG1729245	
1,2,4-Trimethylbenzene	0.0176		0.0151	2.18	08/25/2021 19:16	WG1729245	
1,2,3-Trimethylbenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Vinyl chloride	ND		0.00754	2.18	08/25/2021 19:16	WG1729245	
1,3,5-Trimethylbenzene	ND		0.0151	2.18	08/25/2021 19:16	WG1729245	
Xylenes, Total	0.0581		0.0196	2.18	08/25/2021 19:16	WG1729245	
(S) Toluene-d8	99.4		75.0-131		08/25/2021 19:16	WG1729245	
(S) 4-Bromofluorobenzene	92.8		67.0-138		08/25/2021 19:16	WG1729245	
(S) 1,2-Dichloroethane-d4	90.7		70.0-130		08/25/2021 19:16	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.05	1	08/31/2021 20:39	WG1731367
Residual Range Organics (RRO)	17.6		12.6	1	08/31/2021 20:39	WG1731367
(S) o-Terphenyl	51.2		18.0-148		08/31/2021 20:39	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	C
Acenaphthene	ND		0.0421	1	08/29/2021 03:39	WG1730358	² T
Acenaphthylene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Anthracene	ND		0.0421	1	08/29/2021 03:39	WG1730358	2
Benzidine	ND		2.11	1	08/29/2021 03:39	WG1730358	ໍ S
Benzo(a)anthracene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Benzo(b)fluoranthene	ND		0.0421	1	08/29/2021 03:39	WG1730358	4
Benzo(k)fluoranthene	ND		0.0421	1	08/29/2021 03:39	WG1730358	C
Benzo(g,h,i)perylene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
							⁵ S
Benzo(a)pyrene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Bis(2-chlorethoxy)methane	ND		0.421	1	08/29/2021 03:39	WG1730358	6
Bis(2-chloroethyl)ether	ND		0.421	1	08/29/2021 03:39	WG1730358	Č
2,2-Oxybis(1-Chloropropane)	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
4-Bromophenyl-phenylether	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	7
2-Chloronaphthalene	ND		0.0421	1	08/29/2021 03:39	WG1730358	í G
4-Chlorophenyl-phenylether	ND		0.421	1	08/29/2021 03:39	WG1730358	
Chrysene	ND		0.0421	1	08/29/2021 03:39	WG1730358	۵ م
Dibenz(a,h)anthracene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
1,2-Dichlorobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	9
1,3-Dichlorobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	r
1,4-Dichlorobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	
3,3-Dichlorobenzidine	ND		0.421	1	08/29/2021 03:39	WG1730358	
2,4-Dinitrotoluene	ND		0.421	1	08/29/2021 03:39	WG1730358	
2,6-Dinitrotoluene	ND		0.421	1	08/29/2021 03:39	WG1730358	
Fluoranthene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Fluorene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Hexachlorobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	
	ND		0.421	1			
Hexachloro-1,3-butadiene		<u></u>			08/29/2021 03:39	WG1730358	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.421	1	08/29/2021 03:39	WG1730358	
Hexachloroethane	ND		0.421	1	08/29/2021 03:39	WG1730358	
Indeno(1,2,3-cd)pyrene	ND		0.0421	1	08/29/2021 03:39	<u>WG1730358</u>	
Isophorone	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
Naphthalene	ND		0.0421	1	08/29/2021 03:39	<u>WG1730358</u>	
Nitrobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	
n-Nitrosodimethylamine	ND		0.421	1	08/29/2021 03:39	WG1730358	
n-Nitrosodiphenylamine	ND		0.421	1	08/29/2021 03:39	WG1730358	
n-Nitrosodi-n-propylamine	ND		0.421	1	08/29/2021 03:39	WG1730358	
Phenanthrene	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Benzylbutyl phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
Bis(2-ethylhexyl)phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
Di-n-butyl phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
Diethyl phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
Dimethyl phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
Di-n-octyl phthalate	ND		0.421	1	08/29/2021 03:39	WG1730358	
	ND		0.0421	1	08/29/2021 03:39	WG1730358	
Pyrene							
1,2,4-Trichlorobenzene	ND		0.421	1	08/29/2021 03:39	WG1730358	
4-Chloro-3-methylphenol	ND		0.421	1	08/29/2021 03:39	WG1730358	
2-Chlorophenol	ND		0.421	1	08/29/2021 03:39	WG1730358	
2,4-Dichlorophenol	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
2,4-Dimethylphenol	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
4,6-Dinitro-2-methylphenol	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
2,4-Dinitrophenol	ND		0.421	1	08/29/2021 03:39	WG1730358	
2-Nitrophenol	ND		0.421	1	08/29/2021 03:39	<u>WG1730358</u>	
4-Nitrophenol	ND		0.421	1	08/29/2021 03:39	WG1730358	
Pentachlorophenol	ND		0.421	1	08/29/2021 03:39	WG1730358	
•	ND		0.421	1	08/29/2021 03:39	WG1730358	
Phenol							

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIOU SDG: L1393384

-

PAGE: 37 of 72

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
(S) 2-Fluorophenol	48.6		12.0-120		08/29/2021 03:39	WG1730358	2
(S) Phenol-d5	49.2		10.0-120		08/29/2021 03:39	<u>WG1730358</u>	
(S) Nitrobenzene-d5	45.5		10.0-122		08/29/2021 03:39	WG1730358	3
(S) 2-Fluorobiphenyl	48.0		15.0-120		08/29/2021 03:39	<u>WG1730358</u>	S
(S) 2,4,6-Tribromophenol	59.8		10.0-127		08/29/2021 03:39	WG1730358	
(S) p-Terphenyl-d14	60.1		10.0-120		08/29/2021 03:39	<u>WG1730358</u>	4

Qc

GI

Â

Collected date/time: 08/17/21 10:40

SAMPLE RESULTS - 09 L1393384

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		73.2		1	08/30/2021 09:25	WG1730124	¯Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0547	1	08/25/2021 19:43	WG1729091

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.73	1	08/26/2021 09:57	WG1728695
Barium	167		0.683	1	08/26/2021 09:57	WG1728695
Cadmium	ND		0.683	1	08/26/2021 09:57	WG1728695
Chromium	16.9		1.37	1	08/26/2021 09:57	WG1728695
Lead	4.35		0.683	1	08/26/2021 09:57	WG1728695
Selenium	ND		2.73	1	08/27/2021 06:59	WG1728695
Silver	ND		1.37	1	08/26/2021 09:57	WG1728695

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		6.76	42.8	08/26/2021 09:15	WG1729501
(S) a,a,a-Trifluorotoluene(FID)	114		77.0-120		08/26/2021 09:15	WG1729501

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.130	1.64	08/25/2021 19:35	WG1729245	
Acrylonitrile	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
Benzene	ND		0.00261	1.64	08/25/2021 19:35	WG1729245	
Bromobenzene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
Bromodichloromethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Bromoform	ND		0.0652	1.64	08/25/2021 19:35	WG1729245	
Bromomethane	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
n-Butylbenzene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
sec-Butylbenzene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
tert-Butylbenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Carbon tetrachloride	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Chlorobenzene	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Chlorodibromomethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Chloroethane	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Chloroform	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Chloromethane	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
2-Chlorotoluene	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
4-Chlorotoluene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
1,2-Dibromo-3-Chloropropane	ND		0.0652	1.64	08/25/2021 19:35	WG1729245	
1,2-Dibromoethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Dibromomethane	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
1,2-Dichlorobenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
1,3-Dichlorobenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
1,4-Dichlorobenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Dichlorodifluoromethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
1,1-Dichloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
1,2-Dichloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
ACCOUN	T:		PROJEC	:T:	SDG:	DATE/TIME:	PAG

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

L1393384

PAGE: 39 of 72

1

Ss

Cn

Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00652	1.64	08/25/2021 19:35	<u>WG1729245</u>	
cis-1,2-Dichloroethene	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
trans-1,2-Dichloroethene	ND		0.0130	1.64	08/25/2021 19:35	<u>WG1729245</u>	
1,2-Dichloropropane	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
1,1-Dichloropropene	ND		0.00652	1.64	08/25/2021 19:35	<u>WG1729245</u>	
1,3-Dichloropropane	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
cis-1,3-Dichloropropene	ND		0.00652	1.64	08/25/2021 19:35	<u>WG1729245</u>	
trans-1,3-Dichloropropene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
2,2-Dichloropropane	ND		0.00652	1.64	08/25/2021 19:35	<u>WG1729245</u>	
Di-isopropyl ether	ND		0.00261	1.64	08/25/2021 19:35	WG1729245	
Ethylbenzene	ND		0.00652	1.64	08/25/2021 19:35	<u>WG1729245</u>	
Hexachloro-1,3-butadiene	ND		0.0652	1.64	08/25/2021 19:35	WG1729245	
sopropylbenzene	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
p-lsopropyltoluene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
2-Butanone (MEK)	ND		0.261	1.64	08/25/2021 19:35	<u>WG1729245</u>	
Methylene Chloride	ND		0.0652	1.64	08/25/2021 19:35	WG1729245	
I-Methyl-2-pentanone (MIBK)	ND		0.0652	1.64	08/25/2021 19:35	WG1729245	
Methyl tert-butyl ether	ND		0.00261	1.64	08/25/2021 19:35	WG1729245	
Naphthalene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
n-Propylbenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Styrene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
,1,1,2-Tetrachloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
I,1,2,2-Tetrachloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
1,1,2-Trichlorotrifluoroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Fetrachloroethene	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Foluene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
I,2,3-Trichlorobenzene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
I,2,4-Trichlorobenzene	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
I,1,1-Trichloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
I,1,2-Trichloroethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
Trichloroethene	ND		0.00261	1.64	08/25/2021 19:35	WG1729245	
Trichlorofluoromethane	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
1,2,3-Trichloropropane	ND		0.0326	1.64	08/25/2021 19:35	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
I,2,3-Trimethylbenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
/inyl chloride	ND		0.00652	1.64	08/25/2021 19:35	WG1729245	
I,3,5-Trimethylbenzene	ND		0.0130	1.64	08/25/2021 19:35	WG1729245	
Kylenes, Total	ND		0.0170	1.64	08/25/2021 19:35	WG1729245	
(S) Toluene-d8	97.1		75.0-131		08/25/2021 19:35	WG1729245	
(S) 4-Bromofluorobenzene	92.2		67.0-138		08/25/2021 19:35	WG1729245	
(S) 1,2-Dichloroethane-d4	90.4		70.0-130		08/25/2021 19:35	WG1729245	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.47	1	08/31/2021 19:59	<u>WG1731367</u>
Residual Range Organics (RRO)	ND		13.7	1	08/31/2021 19:59	<u>WG1731367</u>
(S) o-Terphenyl	57.4		18.0-148		08/31/2021 19:59	WG1731367

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

Collected date/time: 08/17/21 10:40

SAMPLE RESULTS - 09 L1393384

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Ср
Acenaphthene	ND		0.0455	1	08/28/2021 21:42	WG1730358	² Tc
Acenaphthylene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Anthracene	ND		0.0455	1	08/28/2021 21:42	WG1730358	3
Benzidine	ND		2.28	1	08/28/2021 21:42	WG1730358	Ss
Benzo(a)anthracene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Benzo(b)fluoranthene	ND		0.0455	1	08/28/2021 21:42	WG1730358	4
Benzo(k)fluoranthene	ND		0.0455	1	08/28/2021 21:42	WG1730358	Cn
Benzo(g,h,i)perylene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Benzo(a)pyrene	ND		0.0455	1	08/28/2021 21:42	WG1730358	⁵Sr
Bis(2-chlorethoxy)methane	ND		0.455	1	08/28/2021 21:42	WG1730358	
Bis(2-chloroethyl)ether	ND		0.455	1	08/28/2021 21:42	WG1730358	6
2,2-Oxybis(1-Chloropropane)	ND		0.455	1	08/28/2021 21:42	WG1730358	ČQc
4-Bromophenyl-phenylether	ND		0.455	1	08/28/2021 21:42	WG1730358	
2-Chloronaphthalene	ND		0.455	1	08/28/2021 21:42	WG1730358	⁷ Gl
			0.455		08/28/2021 21:42		
4-Chlorophenyl-phenylether	ND			1		WG1730358	8
Chrysene	ND		0.0455	1	08/28/2021 21:42	WG1730358	ĨĂ
Dibenz(a,h)anthracene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
1,2-Dichlorobenzene	ND		0.455	1	08/28/2021 21:42	WG1730358	°Sc
1,3-Dichlorobenzene	ND		0.455	1	08/28/2021 21:42	WG1730358	SC
1,4-Dichlorobenzene	ND		0.455	1	08/28/2021 21:42	<u>WG1730358</u>	
3,3-Dichlorobenzidine	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,4-Dinitrotoluene	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,6-Dinitrotoluene	ND		0.455	1	08/28/2021 21:42	WG1730358	
Fluoranthene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Fluorene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Hexachlorobenzene	ND		0.455	1	08/28/2021 21:42	WG1730358	
Hexachloro-1,3-butadiene	ND		0.455	1	08/28/2021 21:42	WG1730358	
Hexachlorocyclopentadiene	ND	<u>C3</u>	0.455	1	08/28/2021 21:42	WG1730358	
Hexachloroethane	ND	_	0.455	1	08/28/2021 21:42	WG1730358	
Indeno(1,2,3-cd)pyrene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Isophorone	ND		0.455	1	08/28/2021 21:42	WG1730358	
Naphthalene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
Nitrobenzene	ND		0.455	1	08/28/2021 21:42	WG1730358	
n-Nitrosodimethylamine	ND		0.455	1	08/28/2021 21:42	WG1730358	
n-Nitrosodiphenylamine	115		0.455		08/28/2021 21:42		
n-Nitrosodi-n-propylamine	ND		0.455	1	08/28/2021 21:42	WG1730358	
	ND				08/28/2021 21:42	WG1730358	
Phenanthrene Described a later later	ND		0.0455	1		WG1730358	
Benzylbutyl phthalate	ND		0.455	1	08/28/2021 21:42	WG1730358	
Bis(2-ethylhexyl)phthalate	ND		0.455	1	08/28/2021 21:42	WG1730358	
Di-n-butyl phthalate	ND		0.455	1	08/28/2021 21:42	WG1730358	
Diethyl phthalate	ND		0.455	1	08/28/2021 21:42	WG1730358	
Dimethyl phthalate	ND		0.455	1	08/28/2021 21:42	<u>WG1730358</u>	
Di-n-octyl phthalate	ND		0.455	1	08/28/2021 21:42	<u>WG1730358</u>	
Pyrene	ND		0.0455	1	08/28/2021 21:42	WG1730358	
1,2,4-Trichlorobenzene	ND		0.455	1	08/28/2021 21:42	WG1730358	
4-Chloro-3-methylphenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2-Chlorophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,4-Dichlorophenol	ND		0.455	1	08/28/2021 21:42	<u>WG1730358</u>	
2,4-Dimethylphenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
4,6-Dinitro-2-methylphenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,4-Dinitrophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2-Nitrophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
4-Nitrophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
Pentachlorophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
Phenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,4,6-Trichlorophenol	ND		0.455	1	08/28/2021 21:42	WG1730358	
2,7,0-1101000000	ND		0.455	I	00/20/202121.42	W01/30330	

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

PAGE: 41 of 72 Collected date/time: 08/17/21 10:40

SAMPLE RESULTS - 09

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
nalyte	mg/kg		mg/kg		date / time		L
(S) 2-Fluorophenol	39.7		12.0-120		08/28/2021 21:42	WG1730358	
(S) Phenol-d5	35.7		10.0-120		08/28/2021 21:42	<u>WG1730358</u>	
(S) Nitrobenzene-d5	37.2		10.0-122		08/28/2021 21:42	WG1730358	
(S) 2-Fluorobiphenyl	33.8		15.0-120		08/28/2021 21:42	WG1730358	
(S) 2,4,6-Tribromophenol	35.7		10.0-127		08/28/2021 21:42	WG1730358	
(S) p-Terphenyl-d14	38.8		10.0-120		08/28/2021 21:42	WG1730358	

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09 Qc

GI

Â

B-6 DUP

Collected date/time: 08/17/21 15:00

SAMPLE RESULTS - 10 L1393384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Р
Analyte	%			date / time		2	_
Total Solids	74.3		1	08/30/2021 09:16	WG1730126	T (С

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.164	2.18	08/25/2021 19:55	WG1729245	
crylonitrile	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
enzene	ND		0.00328	2.18	08/25/2021 19:55	WG1729245	
romobenzene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
romodichloromethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
romoform	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
romomethane	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
-Butylbenzene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
ec-Butylbenzene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
ert-Butylbenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
arbon tetrachloride	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
hlorobenzene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
hlorodibromomethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
Chloroethane	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
Chloroform	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
hloromethane	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
-Chlorotoluene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
-Chlorotoluene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
2-Dibromo-3-Chloropropane	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
2-Dibromoethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
ibromomethane	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
2-Dichlorobenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
3-Dichlorobenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
4-Dichlorobenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
ichlorodifluoromethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
1-Dichloroethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
2-Dichloroethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
1-Dichloroethene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
is-1,2-Dichloroethene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
ans-1,2-Dichloroethene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
2-Dichloropropane	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
1-Dichloropropene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
3-Dichloropropane	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
is-1,3-Dichloropropene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
ans-1,3-Dichloropropene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
,2-Dichloropropane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
i-isopropyl ether	ND		0.00328	2.18	08/25/2021 19:55	WG1729245	
thylbenzene	ND		0.00320	2.18	08/25/2021 19:55	WG1729245	
lexachloro-1,3-butadiene	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
sopropylbenzene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
-lsopropyltoluene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
-Butanone (MEK)	ND		0.328	2.18	08/25/2021 19:55	WG1729245	
lethylene Chloride	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
-Methyl-2-pentanone (MIBK)	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
lethyl tert-butyl ether	ND		0.0820	2.18	08/25/2021 19:55	WG1729245	
laphthalene Bropylbonzono	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
-Propylbenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
Styrene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	ND ND		0.00820	2.18 2.18	08/25/2021 19:55 08/25/2021 19:55	WG1729245 WG1729245	

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 43 of 72

1

B-6 DUP Collected date/time: 08/17/21 15:00

SAMPLE RESULTS - 10

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
1,1,2-Trichlorotrifluoroethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	2
Tetrachloroethene	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
Toluene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
1,2,3-Trichlorobenzene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
1,2,4-Trichlorobenzene	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	L
1,1,1-Trichloroethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
1,1,2-Trichloroethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
Trichloroethene	ND		0.00328	2.18	08/25/2021 19:55	WG1729245	
Trichlorofluoromethane	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	
1,2,3-Trichloropropane	ND		0.0411	2.18	08/25/2021 19:55	WG1729245	
1,2,4-Trimethylbenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	6
1,2,3-Trimethylbenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
Vinyl chloride	ND		0.00820	2.18	08/25/2021 19:55	WG1729245	E
1,3,5-Trimethylbenzene	ND		0.0164	2.18	08/25/2021 19:55	WG1729245	
Xylenes, Total	ND		0.0214	2.18	08/25/2021 19:55	WG1729245	L
(S) Toluene-d8	101		75.0-131		08/25/2021 19:55	WG1729245	8
(S) 4-Bromofluorobenzene	94.0		67.0-138		08/25/2021 19:55	WG1729245	
(S) 1,2-Dichloroethane-d4	90.8		70.0-130		08/25/2021 19:55	WG1729245	9

E

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06,07,08,09

Method Blank (MB)

Method Blank	(IVIB)				1 C C
(MB) R3698210-1 (08/30/21 09:25				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	¯Тс
Total Solids	0.00100				
					³ Ss

L1393379-54 Original Sample (OS) • Duplicate (DUP)

(OS) L1393379-54 08/	'30/21 09:25 • (DU	P) R3698210-3	3 08/30/2 [.]	09:25		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	69.6	72.0	1	3.36		10

Laboratory Control Sample (LCS)

(LCS) R3698210-2 08	8/30/21 09:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

DATE/TIME: 09/03/21 16:09 Cn

Sr

Qc

Gl

Â

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1393384-10

Method Blank (MB)

Method Blank	(MB)				1	1 Cp
(MB) R3698207-1	08/30/21 09:16					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	F	2
Analyte	%		%	%		Tc
Total Solids	0.000				L	
						³ Ss

L1393397-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1393397-03 08/30	0/21 09:16 • (DUP	P) R3698207-3	3 08/30/2	1 09:16		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	77.0	77.4	1	0.540		10

Laboratory Control Sample (LCS)

(LCS) R3698207-2 08	3/30/21 09:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1393384

DATE/TIME: 09/03/21 16:09 ⁺Cn

Sr

[°]Qc

GI

Â

Mercury by Method 7471B

QUALITY CONTROL SUMMARY L1393384-01,02,03,04,05,06,07,08,09

Method Blank (MB)

Method Blank					
(MB) R3696469-1 (08/25/21 18:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Mercury	U		0.0180	0.0400	

Laboratory Control Sample (LCS)

(LCS) R3696469-2 08/2	5/21 18:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Mercury	0.500	0.514	103	80.0-120	

L1393297-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393297-18 08/25/2	118:44 • (MS) R	3696469-3 0	8/25/21 18:47 •	(MSD) R36964	69-4 08/25/21	1 18:49						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Mercury	0.500	ND	0.616	1.17	104	199	1	75.0-125		<u>J3 J5</u>	62.2	20

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 47 of 72 Cn

Sr

Qc

GI

Â

Metals (ICP) by Method 6010D

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06,07,08,09

Method Blank (MB)

Method Blank					
(MB) R3697060-1 C	08/26/21 08:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Arsenic	U		0.518	2.00	
Barium	U		0.0852	0.500	
Cadmium	U		0.0471	0.500	
Chromium	U		0.133	1.00	
Lead	U		0.208	0.500	
Selenium	U		0.764	2.00	
Silver	U		0.127	1.00	

Method Blank (MB)

(MB) R3697303-1 C	08/27/21 06:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Selenium	U		0.764	2.00

Laboratory Control Sample (LCS)

(LCS) R3697060-2 08	8/26/21 08:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	94.2	94.2	80.0-120	
Barium	100	100	100	80.0-120	
Cadmium	100	94.4	94.4	80.0-120	
Chromium	100	95.6	95.6	80.0-120	
Lead	100	97.0	97.0	80.0-120	
Selenium	100	96.4	96.4	80.0-120	
Silver	20.0	18.2	90.9	80.0-120	

Laboratory Control Sample (LCS)

(LCS) R3697303-2 08/27	/21 06:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualif
Analyte	mg/kg	mg/kg	%	%	
Selenium	100	95.1	95.1	80.0-120	

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09 [°]Qc

GI

Â

QUALITY CONTROL SUMMARY L1393384-01,02,03,04,05,06,07,08,09

L1393384-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-07 08/26/21 08:51 • (MS) R3697060-5 08/26/21 08:59 • (MSD) R3697060-6 08/26/21 09:02

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	140	ND	121	115	86.8	82.5	1	75.0-125			5.03	20
Barium	140	182	308	294	90.2	80.1	1	75.0-125			4.67	20
Cadmium	140	ND	124	118	88.8	84.5	1	75.0-125			4.94	20
Chromium	140	18.0	146	136	91.7	84.7	1	75.0-125			6.97	20
Lead	140	119	282	265	116	104	1	75.0-125			6.21	20
Silver	27.9	ND	24.5	23.4	87.0	82.9	1	75.0-125			4.77	20

L1393384-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-07 08/27/2	21 06:10 • (MS)	R3697303-5 0	8/27/21 06:18 •	(MSD) R36973	303-6 08/27/2	1 06:21						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Selenium	140	ND	123	124	88.0	88.8	1	75.0-125			0.939	20

DATE/TIME: 09/03/21 16:09

²Tc ³Ss ⁴Cn ⁵Sr

> [°]GI [°]AI

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY L1393384-01,02,03,04

Method Blank (MB)

Method Blank (MB	ሪ)				
(MB) R3697360-2 08/26/	<i>з</i> /21 05:07				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Gasoline Range Organics-NWTPH	U		0.848	2.50	
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3697360-1 08/26/	/21 04:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	5.06	92.0	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	

DATE/TIME: 09/03/21 16:09

PAGE: 50 of 72 Sr

Qc

GI

Â

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY L1393384-05,06,07,08,09

Method Blank (MB)

Method Blank (MB	3)										
(MB) R3696675-3 08/26/21 02:32											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Gasoline Range Organics-NWTPH	U		0.848	2.50							
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120							

Laboratory Control Sample (LCS)

(LCS) R3696675-2 08/26	6/21 01:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	5.76	105	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	

L1392397-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1392397-01 08/26/	DS) L1392397-01 08/26/21 09:37 • (MS) R3696675-4 08/26/21 09:58 • (MSD) R3696675-5 08/26/21 10:20												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	1520	5190	5320	66.7	69.1	1000	10.0-149			2.47	27	
(S) a,a,a-Trifluorotoluene(FID)					99.6	100		77.0-120					

Sample Narrative:

OS: Non-target compounds too high to run at a lower dilution.

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 51 of 72 Sr

Å

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3696879-3 08/25/						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Acetone	U		0.0365	0.0500		[
Acrylonitrile	U		0.00361	0.0125		
Benzene	U		0.000467	0.00100		
Bromobenzene	U		0.000900	0.0125		ſ
Bromodichloromethane	U		0.000725	0.00250		
Bromoform	U		0.00117	0.0250		L
Bromomethane	U		0.00197	0.0125		
n-Butylbenzene	U		0.00525	0.0125		
ec-Butylbenzene	U		0.00288	0.0125		
ert-Butylbenzene	U		0.00195	0.00500		
Carbon tetrachloride	U		0.000898	0.00500		
Chlorobenzene	U		0.000210	0.00250		
Chlorodibromomethane	U		0.000612	0.00250		
Chloroethane	U		0.00170	0.00500		
Chloroform	U		0.00103	0.00250		
Chloromethane	U		0.00435	0.0125		
-Chlorotoluene	U		0.000865	0.00250		
-Chlorotoluene	U		0.000450	0.00500		
,2-Dibromo-3-Chloropropane	U		0.00390	0.0250		-
,2-Dibromoethane	U		0.000648	0.00250		
Dibromomethane	U		0.000750	0.00500		
,2-Dichlorobenzene	U		0.000425	0.00500		
,3-Dichlorobenzene	U		0.000600	0.00500		
,4-Dichlorobenzene	U		0.000700	0.00500		
Dichlorodifluoromethane	U		0.00161	0.00250		
,1-Dichloroethane	U		0.000491	0.00250		
,2-Dichloroethane	U		0.000649	0.00250		
,1-Dichloroethene	U		0.000606	0.00250		
is-1,2-Dichloroethene	U		0.000734	0.00250		
rans-1,2-Dichloroethene	U		0.00104	0.00500		
,2-Dichloropropane	U		0.00142	0.00500		
,1-Dichloropropene	U		0.000809	0.00250		
,3-Dichloropropane	U		0.000501	0.00500		
is-1,3-Dichloropropene	U		0.000757	0.00250		
rans-1,3-Dichloropropene	U		0.00114	0.00500		
,2-Dichloropropane	U		0.00138	0.00250		
Di-isopropyl ether	U		0.000410	0.00100		
Ethylbenzene	U		0.000737	0.00250		
lexachloro-1,3-butadiene	U		0.00600	0.0250		
sopropylbenzene	U		0.000425	0.00250		

Cardno - Peachtree Corners, GA

CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 52 of 72

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1393384-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)					1
(MB) R3696879-3 08/25/2	21 11:42				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
p-lsopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	0.123		0.0635	0.100	³ Ss
Methylene Chloride	U		0.00664	0.0250	00
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	4
Methyl tert-butyl ether	U		0.000350	0.00100	Cn
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	⁵Sr
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	6
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	ଁQc
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	⁷ Gl
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	<u> </u>
1,2,3-Trichlorobenzene	U		0.00733	0.0125	8
1,2,4-Trichlorobenzene	U		0.00440	0.0125	A
1,1,1-Trichloroethane	U		0.000923	0.00250	
1,1,2-Trichloroethane	U		0.000597	0.00250	⁹ Sc
Trichloroethene	U		0.000584	0.00100	00
Trichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
1,2,3-Trimethylbenzene	U		0.00158	0.00500	
1,2,4-Trimethylbenzene	U		0.00158	0.00500	
1,3,5-Trimethylbenzene	U		0.00200	0.00500	
Vinyl chloride	U		0.00116	0.00250	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	100			75.0-131	
(S) 4-Bromofluorobenzene	94.3			67.0-138	
(S) 1,2-Dichloroethane-d4	91.6			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	0.632	0.617	101	98.7	10.0-160			2.40	31
Acrylonitrile	0.625	0.603	0.583	96.5	93.3	45.0-153			3.37	22
Benzene	0.125	0.107	0.113	85.6	90.4	70.0-123			5.45	20
Bromobenzene	0.125	0.116	0.119	92.8	95.2	73.0-121			2.55	20
Bromodichloromethane	0.125	0.114	0.119	91.2	95.2	73.0-121			4.29	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQIOU	L1393384	09/03/21 16:09	53 of 72

QUALITY CONTROL SUMMARY L1393384-01,02,03,04,05,06,07,08,09,10

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ng/kg	mg/kg	mg/kg	%	%	%			%	%	
Bromoform	0.125	0.122	0.118	97.6	94.4	64.0-132			3.33	20	
Bromomethane	0.125	0.106	0.113	84.8	90.4	56.0-147			6.39	20	
n-Butylbenzene	0.125	0.115	0.124	92.0	99.2	68.0-135			7.53	20	
sec-Butylbenzene	0.125	0.114	0.121	91.2	96.8	74.0-130			5.96	20	
tert-Butylbenzene	0.125	0.117	0.122	93.6	97.6	75.0-127			4.18	20	
Carbon tetrachloride	0.125	0.114	0.118	91.2	94.4	66.0-128			3.45	20	
Chlorobenzene	0.125	0.112	0.115	89.6	92.0	76.0-128			2.64	20	
Chlorodibromomethane	0.125	0.121	0.121	96.8	96.8	74.0-127			0.000	20	
Chloroethane	0.125	0.102	0.110	81.6	88.0	61.0-134			7.55	20	
Chloroform	0.125	0.111	0.118	88.8	94.4	72.0-123			6.11	20	
Chloromethane	0.125	0.105	0.108	84.0	86.4	51.0-138			2.82	20	
2-Chlorotoluene	0.125	0.112	0.120	89.6	96.0	75.0-124			6.90	20	
4-Chlorotoluene	0.125	0.109	0.115	87.2	92.0	75.0-124			5.36	20	
1,2-Dibromo-3-Chloropropane	0.125	0.119	0.114	95.2	91.2	59.0-130			4.29	20	
1,2-Dibromoethane	0.125	0.120	0.122	96.0	97.6	74.0-128			1.65	20	
Dibromomethane	0.125	0.117	0.119	93.6	95.2	75.0-122			1.69	20	
1,2-Dichlorobenzene	0.125	0.112	0.115	89.6	92.0	76.0-124			2.64	20	
1,3-Dichlorobenzene	0.125	0.115	0.119	92.0	95.2	76.0-125			3.42	20	
1,4-Dichlorobenzene	0.125	0.118	0.117	94.4	93.6	77.0-121			0.851	20	
Dichlorodifluoromethane	0.125	0.111	0.115	88.8	92.0	43.0-156			3.54	20	
1,1-Dichloroethane	0.125	0.111	0.117	88.8	93.6	70.0-127			5.26	20	
1,2-Dichloroethane	0.125	0.113	0.118	90.4	94.4	65.0-131			4.33	20	
1,1-Dichloroethene	0.125	0.118	0.123	94.4	98.4	65.0-131			4.15	20	
cis-1,2-Dichloroethene	0.125	0.113	0.125	90.4	92.8	73.0-125			2.62	20	
trans-1,2-Dichloroethene	0.125	0.113	0.121	90.4	96.8	71.0-125			6.84	20	
1,2-Dichloropropane	0.125	0.115	0.121	92.0	97.6	74.0-125			5.91	20	
1,1-Dichloropropene	0.125	0.113	0.122	90.4	96.0	73.0-125			6.01	20	
1,3-Dichloropropane	0.125	0.118	0.120	94.4	96.0	80.0-125			1.68	20	
cis-1,3-Dichloropropene	0.125	0.113	0.120	90.4	94.4	76.0-127			4.33	20	
trans-1,3-Dichloropropene	0.125	0.113	0.120	93.6	96.0	73.0-127			2.53	20	
2,2-Dichloropropane	0.125	0.114	0.120	91.2	93.6	59.0-135			2.60	20	
Di-isopropyl ether	0.125	0.113	0.114	90.4	91.2	60.0-136			0.881	20	
Ethylbenzene	0.125	0.113	0.114	88.8	93.6	74.0-126			5.26	20	
Hexachloro-1,3-butadiene	0.125	0.121	0.126	96.8	101	57.0-120			4.05	20	
Isopropylbenzene	0.125	0.121	0.120	91.2	91.2	72.0-127			0.000	20	
	0.125	0.114	0.114	91.2	96.0	72.0-127			5.13		
p-lsopropyltoluene	0.625		0.620	91.2 99.7	96.0 99.2				0.483	20 24	
2-Butanone (MEK)	0.625	0.623				30.0-160					
Methylene Chloride		0.118	0.122	94.4	97.6	68.0-123			3.33	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.614	0.612	98.2	97.9 80.6	56.0-143			0.326	20	
Methyl tert-butyl ether	0.125	0.109	0.112	87.2	89.6	66.0-132			2.71	20	

CHILOQIOU

SDG: L1393384

09/03/21 16:09

54 of 72

² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl

AI

QUALITY CONTROL SUMMARY L1393384-01,02,03,04,05,06,07,08,09,10

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3696879-1 08/25/	/21 10:24 • (LCSI	D) R3696879-	2 08/25/2110:	43						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Naphthalene	0.125	0.119	0.122	95.2	97.6	59.0-130			2.49	20
n-Propylbenzene	0.125	0.111	0.114	88.8	91.2	74.0-126			2.67	20
Styrene	0.125	0.116	0.116	92.8	92.8	72.0-127			0.000	20
1,1,1,2-Tetrachloroethane	0.125	0.112	0.110	89.6	88.0	74.0-129			1.80	20
1,1,2,2-Tetrachloroethane	0.125	0.123	0.122	98.4	97.6	68.0-128			0.816	20
Tetrachloroethene	0.125	0.111	0.117	88.8	93.6	70.0-136			5.26	20
Toluene	0.125	0.108	0.112	86.4	89.6	75.0-121			3.64	20
1,1,2-Trichlorotrifluoroethane	0.125	0.113	0.120	90.4	96.0	61.0-139			6.01	20
1,2,3-Trichlorobenzene	0.125	0.120	0.125	96.0	100	59.0-139			4.08	20
1,2,4-Trichlorobenzene	0.125	0.119	0.123	95.2	98.4	62.0-137			3.31	20
1,1,1-Trichloroethane	0.125	0.116	0.119	92.8	95.2	69.0-126			2.55	20
1,1,2-Trichloroethane	0.125	0.118	0.121	94.4	96.8	78.0-123			2.51	20
Trichloroethene	0.125	0.110	0.117	88.0	93.6	76.0-126			6.17	20
Trichlorofluoromethane	0.125	0.112	0.116	89.6	92.8	61.0-142			3.51	20
1,2,3-Trichloropropane	0.125	0.122	0.121	97.6	96.8	67.0-129			0.823	20
1,2,3-Trimethylbenzene	0.125	0.112	0.114	89.6	91.2	74.0-124			1.77	20
1,2,4-Trimethylbenzene	0.125	0.113	0.116	90.4	92.8	70.0-126			2.62	20
1,3,5-Trimethylbenzene	0.125	0.114	0.118	91.2	94.4	73.0-127			3.45	20
Vinyl chloride	0.125	0.107	0.109	85.6	87.2	63.0-134			1.85	20
Xylenes, Total	0.375	0.337	0.350	89.9	93.3	72.0-127			3.78	20
(S) Toluene-d8				96.0	96.4	75.0-131				
(S) 4-Bromofluorobenzene				95.3	96.3	67.0-138				
(S) 1,2-Dichloroethane-d4				98.6	99.4	70.0-130				

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/2116:09

PAGE: 55 of 72 Тс

Ss

Cn

Sr

*Q*c

GI

Â

QUALITY CONTROL SUMMARY Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1393384-01,02,03,04,05,06,07,08,09

Method Blank (MB)

	2)				- Ľ.
(MB) R3698946-1 08/31/	1/21 16:23				
	MB Result	MB Qualifier	MB MDL	MB RDL	Г
Analyte	mg/kg		mg/kg	mg/kg	
Diesel Range Organics (DRO	J) U		1.33	4.00	ļ
Residual Range Organics (RF	KRO) U		3.33	10.0	
(S) o-Terphenyl	69.2			18.0-148	
					1

Laboratory Control Sample (LCS)

(LCS) R3698946-2 08/31/	21 16:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	33.6	67.2	50.0-150	
(S) o-Terphenyl			61.1	18.0-148	

L1393384-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-02 08/31/21 20:52 • (MS) R3698946-3 08/31/21 21:06 • (MSD) R3698946-4 08/31/21 21:19												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	65.8	111	130	161	29.0	75.8	1	50.0-150	<u>J6</u>	<u>J3</u>	21.3	20
(S) o-Terphenyl					60.7	58.2		18.0-148				

Sr

GI

Â

Polychlorinated Biphenyls (GC) by Method 8082 A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3697771-1 08/28/21 15:29										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
PCB 1016	U		0.0118	0.0340						
PCB 1221	U		0.0118	0.0340						
PCB 1232	U		0.0118	0.0340						
PCB 1242	U		0.0118	0.0340						
PCB 1248	U		0.00738	0.0170						
PCB 1254	U		0.00738	0.0170						
PCB 1260	U		0.00738	0.0170						
(S) Decachlorobiphenyl	72.2			10.0-135						
(S) Tetrachloro-m-xylene	73.9			10.0-139						

Laboratory Control Sample (LCS)

(LCS) R3697771-2 08/28/21 15:38										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	8				
Analyte	mg/kg	mg/kg	%	%		AI				
PCB 1260	0.167	0.146	87.4	37.0-145		9				
PCB 1016	0.167	0.137	82.0	36.0-141		Sc				
(S) Decachlorobiphenyl			86.8	10.0-135						
(S) Tetrachloro-m-xylene			90.5	10.0-139						

L1393400-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393400-07 08/28/21 22:40 • (MS) R3697771-3 08/28/21 22:49 • (MSD) R3697771-4 08/28/21 22:58												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
PCB 1260	0.167	ND	0.189	0.189	91.6	91.6	1	10.0-160	<u>P</u>	P	0.000	38
PCB 1016	0.167	ND	33.5	27.2	16300	13200	1	10.0-160	<u>J5 P</u>	<u>J5 P</u>	20.7	37
(S) Decachlorobiphenyl					70.1	76.3		10.0-135				
(S) Tetrachloro-m-xylene					89.3	88.1		10.0-139				

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09

PAGE: 57 of 72 Тс

Ss

Cn

Sr

Qc

GI

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06

Method Blank (MB)

Method Blank (MB									¹ Cp
(MB) R3697051-2 08/26/2	21 10:02								СР
	MB Result	MB Qualifier	MB MDL	MB RDL				1	2
Analyte	mg/kg		mg/kg	mg/kg					Тс
Acenaphthene	U		0.00539	0.0333					
Acenaphthylene	U		0.00469	0.0333					³ Ss
Anthracene	U		0.00593	0.0333					
Benzidine	U		0.0626	1.67				I	4
Benzo(a)anthracene	U		0.00587	0.0333					Cn
Benzo(b)fluoranthene	U		0.00621	0.0333					
Benzo(k)fluoranthene	U		0.00592	0.0333					⁵Sr
Benzo(g,h,i)perylene	U		0.00609	0.0333					
Benzo(a)pyrene	U		0.00619	0.0333				1	6
Bis(2-chlorethoxy)methane	U		0.0100	0.333					ଁQc
Bis(2-chloroethyl)ether	U		0.0110	0.333					
2,2-oxybis(1-chloropropane)	U		0.0144	0.333					⁷ Gl
4-Bromophenyl-phenylether	U		0.0117	0.333					
2-Chloronaphthalene	U		0.00585	0.0333				I	8
4-Chlorophenyl-phenylether	U		0.0116	0.333					Ă١
Chrysene	U		0.00662	0.0333					
Dibenz(a,h)anthracene	U		0.00923	0.0333					°Sc
1,2-Dichlorobenzene	U		0.00987	0.333					SC
1,3-Dichlorobenzene	U		0.0101	0.333					
1,4-Dichlorobenzene	U		0.00991	0.333					
3,3-Dichlorobenzidine	U		0.0123	0.333					
2,4-Dinitrotoluene	U		0.00955	0.333					
2,6-Dinitrotoluene	U		0.0109	0.333					
Fluoranthene	U		0.00601	0.0333					
Fluorene	U		0.00542	0.0333					
Hexachlorobenzene	U		0.0118	0.333					
Hexachloro-1,3-butadiene	U		0.0112	0.333					
Hexachlorocyclopentadiene	U		0.0175	0.333					
Hexachloroethane	U		0.0131	0.333					
Indeno(1,2,3-cd)pyrene	U		0.00941	0.0333					
Isophorone	U		0.0102	0.333					
Naphthalene	U		0.00836	0.0333					
Nitrobenzene	U		0.0116	0.333					
n-Nitrosodimethylamine	U		0.0494	0.333					
n-Nitrosodiphenylamine	U		0.0494	0.333					
n-Nitrosodi-n-propylamine	U		0.0252	0.333					
Phenanthrene			0.00661	0.0333					
	U								
Benzylbutyl phthalate	U		0.0104	0.333					
Bis(2-ethylhexyl)phthalate	U		0.0422	0.333					
Di-n-butyl phthalate	U		0.0114	0.333					
Δ	CCOUNT:			PROJECT:	SD	G:	DATE/TIME:	PAGE:	

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 58 of 72

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06

Method Blank (MB)

(MB) R3697051-2 08/26	/21 10:02				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Diethyl phthalate	U		0.0110	0.333	
Dimethyl phthalate	U		0.0706	0.333	³ Ss
Di-n-octyl phthalate	U		0.0225	0.333	
Pyrene	U		0.00648	0.0333	4
1,2,4-Trichlorobenzene	U		0.0104	0.333	Cn
4-Chloro-3-methylphenol	U		0.0108	0.333	
2-Chlorophenol	U		0.0110	0.333	⁵Sr
2,4-Dichlorophenol	U		0.00970	0.333	
2,4-Dimethylphenol	U		0.00870	0.333	6_
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	ိုင
2,4-Dinitrophenol	U		0.0779	0.333	-
2-Nitrophenol	U		0.0119	0.333	⁷ Gl
4-Nitrophenol	U		0.0104	0.333	
Pentachlorophenol	U		0.00896	0.333	8
Phenol	U		0.0134	0.333	A
2,4,6-Trichlorophenol	U		0.0107	0.333	
(S) Nitrobenzene-d5	58.0			10.0-122	⁹ Sc
(S) 2-Fluorobiphenyl	55.0			15.0-120	
(S) p-Terphenyl-d14	56.5			10.0-120	
(S) Phenol-d5	59.0			10.0-120	
(S) 2-Fluorophenol	59.2			12.0-120	
(S) 2,4,6-Tribromophenol	53.0			10.0-127	

Laboratory Control Sample (LCS)

(LCS) R3697051-1 08/26/	21 09:42							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Acenaphthene	0.666	0.316	47.4	38.0-120				
Acenaphthylene	0.666	0.330	49.5	40.0-120				
Anthracene	0.666	0.329	49.4	42.0-120				
Benzidine	1.33	0.446	33.5	10.0-120				
Benzo(a)anthracene	0.666	0.381	57.2	44.0-120				
Benzo(b)fluoranthene	0.666	0.346	52.0	43.0-120				
Benzo(k)fluoranthene	0.666	0.351	52.7	44.0-120				
Benzo(g,h,i)perylene	0.666	0.411	61.7	43.0-120				
Benzo(a)pyrene	0.666	0.348	52.3	45.0-120				
Bis(2-chlorethoxy)methane	0.666	0.295	44.3	20.0-120				
Bis(2-chloroethyl)ether	0.666	0.423	63.5	16.0-120				
A	ACCOUNT:			PRO	ECT:	SDG:	DATE/TIME:	PA

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 59 of 72

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06

Laboratory Control Sample (LCS)

(LCS) R3697051-1 08/26/21 09:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
2,2-Oxybis(1-Chloropropane)	0.666	0.323	48.5	23.0-120		
4-Bromophenyl-phenylether	0.666	0.351	52.7	40.0-120		
2-Chloronaphthalene	0.666	0.324	48.6	35.0-120		
4-Chlorophenyl-phenylether	0.666	0.331	49.7	40.0-120		
Chrysene	0.666	0.349	52.4	43.0-120		
Dibenz(a,h)anthracene	0.666	0.396	59.5	44.0-120		
1,2-Dichlorobenzene	0.666	0.319	47.9	32.0-120		
1,3-Dichlorobenzene	0.666	0.311	46.7	30.0-120		
l,4-Dichlorobenzene	0.666	0.304	45.6	31.0-120		
3,3-Dichlorobenzidine	1.33	0.725	54.5	28.0-120		
2,4-Dinitrotoluene	0.666	0.404	60.7	45.0-120		
2,6-Dinitrotoluene	0.666	0.365	54.8	42.0-120		
Fluoranthene	0.666	0.334	50.2	44.0-120		
Fluorene	0.666	0.329	49.4	41.0-120		
Hexachlorobenzene	0.666	0.328	49.2	39.0-120		
Hexachloro-1,3-butadiene	0.666	0.300	45.0	15.0-120		
Hexachlorocyclopentadiene	0.666	0.291	43.7	15.0-120		
lexachloroethane	0.666	0.331	49.7	17.0-120		
ndeno(1,2,3-cd)pyrene	0.666	0.408	61.3	45.0-120		
sophorone	0.666	0.326	48.9	23.0-120		
Naphthalene	0.666	0.276	41.4	18.0-120		
Vitrobenzene	0.666	0.296	44.4	17.0-120		
n-Nitrosodimethylamine	0.666	0.389	58.4	10.0-125		
n-Nitrosodiphenylamine	0.666	0.317	47.6	40.0-120		
n-Nitrosodi-n-propylamine	0.666	0.356	53.5	26.0-120		
Phenanthrene	0.666	0.329	49.4	42.0-120		
Benzylbutyl phthalate	0.666	0.394	59.2	40.0-120		
Bis(2-ethylhexyl)phthalate	0.666	0.407	61.1	41.0-120		
Di-n-butyl phthalate	0.666	0.356	53.5	43.0-120		
Diethyl phthalate	0.666	0.372	55.9	43.0-120		
Dimethyl phthalate	0.666	0.345	51.8	43.0-120		
Di-n-octyl phthalate	0.666	0.404	60.7	40.0-120		
Pyrene	0.666	0.357	53.6	41.0-120		
l,2,4-Trichlorobenzene	0.666	0.290	43.5	17.0-120		
4-Chloro-3-methylphenol	0.666	0.311	46.7	28.0-120		
2-Chlorophenol	0.666	0.345	51.8	28.0-120		
2,4-Dichlorophenol	0.666	0.303	45.5	25.0-120		
2,4-Dimethylphenol	0.666	0.312	46.8	15.0-120		
4,6-Dinitro-2-methylphenol	0.666	0.370	55.6	16.0-120		
2,4-Dinitrophenol	0.666	0.291	43.7	10.0-120		
	CCOUNT:			PRC	CT: SDG: DATE/TIME:	

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/21 16:09 PAGE: 60 of 72 Тс

Ss

Cn

Sr

[´]Qc

GI

Â

QUALITY CONTROL SUMMARY

LCS Qualifier

L1393384-01,02,03,04,05,06

Laboratory Control Sample (LCS)

(LCS) R3697051-1 08/26/21 09:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
2-Nitrophenol	0.666	0.303	45.5	20.0-120
4-Nitrophenol	0.666	0.388	58.3	27.0-120
Pentachlorophenol	0.666	0.328	49.2	29.0-120
Phenol	0.666	0.336	50.5	28.0-120
2,4,6-Trichlorophenol	0.666	0.331	49.7	37.0-120
(S) Nitrobenzene-d5			46.5	10.0-122
(S) 2-Fluorobiphenyl			48.9	15.0-120
(S) p-Terphenyl-d14			49.8	10.0-120
(S) Phenol-d5			52.3	10.0-120
(S) 2-Fluorophenol			53.3	12.0-120
(S) 2,4,6-Tribromophenol			54.5	10.0-127

L1393384-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-01 08/26/21 11:28 • (MS) R3696997-1 08/26/21 11:49 • (MSD) R3696997-2 08/26/21 12:10

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Acenaphthene	0.948	ND	0.311	0.345	32.8	36.2	1	18.0-120			10.3	32	
Acenaphthylene	0.948	ND	0.321	0.367	33.9	38.5	1	25.0-120			13.2	32	
Anthracene	0.948	ND	0.351	0.379	37.0	39.7	1	22.0-120			7.65	29	
Benzidine	1.89	ND	ND	ND	17.4	15.5	1	10.0-120			10.8	40	
Benzo(a)anthracene	0.948	ND	0.386	0.433	40.7	45.4	1	25.0-120			11.5	29	
Benzo(b)fluoranthene	0.948	ND	0.363	0.404	38.2	42.3	1	19.0-122			10.7	31	
Benzo(k)fluoranthene	0.948	ND	0.371	0.402	39.2	42.2	1	23.0-120			7.97	30	
Benzo(g,h,i)perylene	0.948	ND	0.361	0.382	38.1	40.0	1	10.0-120			5.53	33	
Benzo(a)pyrene	0.948	ND	0.376	0.424	39.6	44.5	1	24.0-120			12.1	30	
Bis(2-chlorethoxy)methane	0.948	ND	ND	ND	25.7	28.2	1	10.0-120			9.74	34	
Bis(2-chloroethyl)ether	0.948	ND	ND	ND	28.9	33.7	1	10.0-120			15.8	40	
2,2-Oxybis(1-Chloropropane)	0.948	ND	ND	ND	29.1	30.8	1	10.0-120			6.19	40	
4-Bromophenyl-phenylether	0.948	ND	ND	ND	35.0	38.9	1	27.0-120			11.3	30	
2-Chloronaphthalene	0.948	ND	0.316	0.339	33.3	35.5	1	20.0-120			7.17	32	
4-Chlorophenyl-phenylether	0.948	ND	ND	ND	37.8	41.2	1	24.0-120			9.38	29	
Chrysene	0.948	ND	0.365	0.399	38.5	41.8	1	21.0-120			8.83	29	
Dibenz(a,h)anthracene	0.948	ND	0.349	0.377	36.8	39.5	1	10.0-120			7.68	32	
1,2-Dichlorobenzene	0.948	ND	ND	ND	30.3	31.8	1	10.0-120			5.46	38	
1,3-Dichlorobenzene	0.948	ND	ND	ND	29.7	30.6	1	10.0-120			3.58	40	
1,4-Dichlorobenzene	0.948	ND	ND	ND	28.9	30.9	1	10.0-120			7.22	39	
3,3-Dichlorobenzidine	1.89	ND	0.727	0.822	38.4	43.1	1	10.0-120			12.3	34	
2,4-Dinitrotoluene	0.948	ND	ND	0.490	46.1	51.4	1	30.0-120			11.4	31	
AC	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
Cardno - Pea	achtree Corners,	GA		CHILC	DQIOU		L1	393384		09/03/2	1 16:09		61 of 72

Тс

Ss

Cn

Sr

ີQc

GI

Â

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06

Тс

Ss

Cn

Sr

[´]Qc

GI

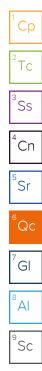
Â

Sc

L1393384-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-01 08/26/21 11:28 • (MS) R3696997-1 08/26/21 11:49 • (MSD) R3696997-2 08/26/21 12:10

, , ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
2,6-Dinitrotoluene	0.948	ND	ND	ND	37.3	43.7	1	25.0-120			16.4	31	
Fluoranthene	0.948	ND	0.396	0.426	41.8	44.6	1	18.0-126			7.14	32	
Fluorene	0.948	ND	0.339	0.376	35.8	39.4	1	25.0-120			10.3	30	
Hexachlorobenzene	0.948	ND	ND	ND	37.9	40.2	1	27.0-120			6.32	28	
Hexachloro-1,3-butadiene	0.948	ND	ND	ND	37.8	37.5	1	10.0-120			0.000	38	
Hexachlorocyclopentadiene	0.948	ND	ND	ND	23.7	26.6	1	10.0-120			12.3	40	
Hexachloroethane	0.948	ND	ND	ND	32.8	33.5	1	10.0-120			2.79	40	
Indeno(1,2,3-cd)pyrene	0.948	ND	0.377	0.407	39.8	42.6	1	10.0-120			7.49	32	
Isophorone	0.948	ND	ND	ND	29.9	33.4	1	13.0-120			11.7	34	
Naphthalene	0.948	ND	0.273	0.295	28.8	30.9	1	10.0-120			7.75	35	
Nitrobenzene	0.948	ND	ND	ND	30.0	33.4	1	10.0-120			11.2	36	
n-Nitrosodimethylamine	0.948	ND	ND	ND	35.8	37.2	1	10.0-127			4.65	40	
n-Nitrosodiphenylamine	0.948	ND	ND	ND	34.1	37.8	1	17.0-120			11.2	29	
n-Nitrosodi-n-propylamine	0.948	ND	ND	ND	28.5	33.2	1	10.0-120			16.0	37	
Phenanthrene	0.948	ND	0.349	0.389	36.8	40.8	1	17.0-120			10.7	31	
Benzylbutyl phthalate	0.948	ND	ND	ND	41.8	47.2	1	23.0-120			12.8	30	
Bis(2-ethylhexyl)phthalate	0.948	ND	ND	ND	41.5	42.6	1	17.0-126			3.30	30	
Di-n-butyl phthalate	0.948	ND	ND	ND	39.5	43.4	1	30.0-120			10.1	29	
Diethyl phthalate	0.948	ND	ND	0.496	45.4	52.0	1	26.0-120			14.3	28	
Dimethyl phthalate	0.948	ND	ND	ND	37.9	43.7	1	25.0-120			14.7	29	
Di-n-octyl phthalate	0.948	ND	ND	ND	43.0	46.0	1	21.0-123			7.28	29	
Pyrene	0.948	ND	0.365	0.410	38.5	42.9	1	16.0-121			11.4	32	
1,2,4-Trichlorobenzene	0.948	ND	ND	ND	30.8	33.7	1	12.0-120			9.57	37	
4-Chloro-3-methylphenol	0.948	ND	ND	ND	27.1	32.8	1	15.0-120			19.6	30	
2-Chlorophenol	0.948	ND	ND	ND	33.9	38.8	1	15.0-120			14.0	37	
2,4-Dichlorophenol	0.948	ND	ND	ND	34.7	38.9	1	20.0-120			12.2	31	
2,4-Dimethylphenol	0.948	ND	ND	ND	35.1	40.9	1	10.0-120			15.8	33	
4,6-Dinitro-2-methylphenol	0.948	ND	ND	0.502	45.2	52.6	1	10.0-120			15.8	39	
2,4-Dinitrophenol	0.948	ND	ND	0.502	46.3	52.6	1	10.0-121			13.4	40	
2-Nitrophenol	0.948	ND	ND	ND	32.0	34.9	1	12.0-120			9.22	39	
4-Nitrophenol	0.948	ND	ND	ND	39.0	44.3	1	10.0-137			13.3	32	
Pentachlorophenol	0.948	ND	ND	ND	39.3	45.5	1	10.0-160			15.3	31	
Phenol	0.948	ND	ND	ND	23.4	24.8	1	12.0-120			6.41	38	
2,4,6-Trichlorophenol	0.948	ND	ND	ND	35.8	41.8	1	19.0-120			16.3	32	
(S) Nitrobenzene-d5					28.4	32.0		10.0-122				•-	
(S) 2-Fluorobiphenyl					31.9	37.8		15.0-120					
(S) p-Terphenyl-d14					30.8	36.0		10.0-120					
(S) Phenol-d5					21.4	0.969		10.0-120		<u>J2</u>			
(S) 2-Fluorophenol					31.3	37.8		12.0-120					
A	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
	achtree Corners,	GA		CHILC				393384		09/03/2			62 of 72


Semi Volatile Organic Compounds (GC/MS) by Method 8270E

QUALITY CONTROL SUMMARY

L1393384-01,02,03,04,05,06

L1393384-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393384-01 08/26/2	1 11:28 • (MS) R	3696997-1 08	/26/21 11:49 • (N	1SD) R369699	7-2 08/26/211	2:10						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
(S) 2,4,6-Tribromophenol					36.7	44.0		10.0-127				

PROJECT: CHILOQIOU SDG: L1393384 DATE/TIME: 09/03/2116:09

PAGE: 63 of 72

QUALITY CONTROL SUMMARY L1393384-07,08,09

Method Blank (MB)

Method Blank (MB))						_ ¹ Cp
(MB) R3697831-2 08/28/2	21 21:01						
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	mg/kg		mg/kg	mg/kg			Тс
Acenaphthene	U		0.00539	0.0333			
Acenaphthylene	U		0.00469	0.0333			³ Ss
Anthracene	U		0.00593	0.0333			00
Benzidine	U		0.0626	1.67			4
Benzo(a)anthracene	U		0.00587	0.0333			Ċn
Benzo(b)fluoranthene	U		0.00621	0.0333			
Benzo(k)fluoranthene	U		0.00592	0.0333			⁵Sr
Benzo(g,h,i)perylene	U		0.00609	0.0333			01
Benzo(a)pyrene	U		0.00619	0.0333			6
Bis(2-chlorethoxy)methane	U		0.0100	0.333			ိဝင
Bis(2-chloroethyl)ether	U		0.0110	0.333			
2,2-oxybis(1-chloropropane)	U		0.0144	0.333			⁷ Gl
4-Bromophenyl-phenylether	U		0.0117	0.333			
2-Chloronaphthalene	U		0.00585	0.0333			8
4-Chlorophenyl-phenylether	U		0.0116	0.333			Ă١
Chrysene	U		0.00662	0.0333			
Dibenz(a,h)anthracene	U		0.00923	0.0333			°Sc
1,2-Dichlorobenzene	U		0.00987	0.333			50
1,3-Dichlorobenzene	U		0.0101	0.333			
1,4-Dichlorobenzene	U		0.00991	0.333			
3,3-Dichlorobenzidine	U		0.0123	0.333			
2,4-Dinitrotoluene	U		0.00955	0.333			
2,6-Dinitrotoluene	U		0.0109	0.333			
Fluoranthene	U		0.00601	0.0333			
Fluorene	U		0.00542	0.0333			
Hexachlorobenzene	U		0.0118	0.333			
Hexachloro-1,3-butadiene	U		0.0112	0.333			
Hexachlorocyclopentadiene	U		0.0175	0.333			
Hexachloroethane	U		0.0131	0.333			
Indeno(1,2,3-cd)pyrene	U		0.00941	0.0333			
Isophorone	U		0.0102	0.333			
Naphthalene	U		0.00836	0.0333			
Nitrobenzene	U		0.0116	0.333			
n-Nitrosodimethylamine	U		0.0494	0.333			
n-Nitrosodiphenylamine	U		0.0252	0.333			
n-Nitrosodi-n-propylamine	U		0.0111	0.333			
Phenanthrene	U		0.00661	0.0333			
	U		0.0104	0.333			
Benzylbutyl phthalate	-						
Benzylbutyl phthalate Bis(2-ethylbexyl)phthalate	U		0.0422	0.333			
Benzylbutyl phthalate Bis(2-ethylhexyl)phthalate Di-n-butyl phthalate	U U		0.0422 0.0114	0.333 0.333			

PAGE: 64 of 72

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

QUALITY CONTROL SUMMARY L1393384-07,08,09

Method Blank (MB)

Method Blank (MB)	1			
(MB) R3697831-2 08/28/2	21 21:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diethyl phthalate	U		0.0110	0.333
Dimethyl phthalate	U		0.0706	0.333
Di-n-octyl phthalate	U		0.0225	0.333
Pyrene	U		0.00648	0.0333
1,2,4-Trichlorobenzene	U		0.0104	0.333
4-Chloro-3-methylphenol	U		0.0108	0.333
2-Chlorophenol	U		0.0110	0.333
2,4-Dichlorophenol	U		0.00970	0.333
2,4-Dimethylphenol	U		0.00870	0.333
4,6-Dinitro-2-methylphenol	U		0.0755	0.333
2,4-Dinitrophenol	U		0.0779	0.333
2-Nitrophenol	U		0.0119	0.333
4-Nitrophenol	U		0.0104	0.333
Pentachlorophenol	U		0.00896	0.333
Phenol	U		0.0134	0.333
2,4,6-Trichlorophenol	U		0.0107	0.333
(S) Nitrobenzene-d5	61.6			10.0-122
(S) 2-Fluorobiphenyl	58.0			15.0-120
(S) p-Terphenyl-d14	75.4			10.0-120
(S) Phenol-d5	61.0			10.0-120
(S) 2-Fluorophenol	60.5			12.0-120
(S) 2,4,6-Tribromophenol	58.6			10.0-127

Laboratory Control Sample (LCS)

(LCS) R3697831-1 08/28/2	21 20:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Acenaphthene	0.666	0.334	50.2	38.0-120	
Acenaphthylene	0.666	0.348	52.3	40.0-120	
Anthracene	0.666	0.336	50.5	42.0-120	
Benzidine	1.33	0.348	26.2	10.0-120	
Benzo(a)anthracene	0.666	0.394	59.2	44.0-120	
Benzo(b)fluoranthene	0.666	0.340	51.1	43.0-120	
Benzo(k)fluoranthene	0.666	0.355	53.3	44.0-120	
Benzo(g,h,i)perylene	0.666	0.405	60.8	43.0-120	
Benzo(a)pyrene	0.666	0.344	51.7	45.0-120	
Bis(2-chlorethoxy)methane	0.666	0.315	47.3	20.0-120	
Bis(2-chloroethyl)ether	0.666	0.453	68.0	16.0-120	

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 65 of 72

QUALITY CONTROL SUMMARY

L1393384-07,08,09

Laboratory Control Sample (LCS)

(LCS) R3697831-1 08/28/21 20:41

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		2
Analyte	mg/kg	mg/kg	%	%			T
2,2-Oxybis(1-Chloropropane)	0.666	0.330	49.5	23.0-120			\vdash
4-Bromophenyl-phenylether	0.666	0.353	53.0	40.0-120			³ S
2-Chloronaphthalene	0.666	0.329	49.4	35.0-120			Ľ
4-Chlorophenyl-phenylether	0.666	0.339	50.9	40.0-120			4
Chrysene	0.666	0.364	54.7	43.0-120			C
Dibenz(a,h)anthracene	0.666	0.393	59.0	44.0-120			
1,2-Dichlorobenzene	0.666	0.323	48.5	32.0-120			⁵ S
1,3-Dichlorobenzene	0.666	0.305	45.8	30.0-120			Ľ
1,4-Dichlorobenzene	0.666	0.306	45.9	31.0-120			6
3,3-Dichlorobenzidine	1.33	0.760	57.1	28.0-120			Č
2,4-Dinitrotoluene	0.666	0.408	61.3	45.0-120			
2,6-Dinitrotoluene	0.666	0.371	55.7	42.0-120			⁷ G
Fluoranthene	0.666	0.334	50.2	44.0-120			Ľ
Fluorene	0.666	0.341	51.2	41.0-120			8
Hexachlorobenzene	0.666	0.346	52.0	39.0-120			A
Hexachloro-1,3-butadiene	0.666	0.295	44.3	15.0-120			
Hexachlorocyclopentadiene	0.666	0.299	44.9	15.0-120			⁹ S
Hexachloroethane	0.666	0.348	52.3	17.0-120			
Indeno(1,2,3-cd)pyrene	0.666	0.393	59.0	45.0-120			
Isophorone	0.666	0.336	50.5	23.0-120			
Naphthalene	0.666	0.276	41.4	18.0-120			
Nitrobenzene	0.666	0.311	46.7	17.0-120			
n-Nitrosodimethylamine	0.666	0.409	61.4	10.0-125			
n-Nitrosodiphenylamine	0.666	0.331	49.7	40.0-120			
n-Nitrosodi-n-propylamine	0.666	0.374	56.2	26.0-120			
Phenanthrene	0.666	0.343	51.5	42.0-120			
Benzylbutyl phthalate	0.666	0.396	59.5	40.0-120			
Bis(2-ethylhexyl)phthalate	0.666	0.407	61.1	41.0-120			
Di-n-butyl phthalate	0.666	0.353	53.0	43.0-120			
Diethyl phthalate	0.666	0.387	58.1	43.0-120			
Dimethyl phthalate	0.666	0.365	54.8	43.0-120			
Di-n-octyl phthalate	0.666	0.378	56.8	40.0-120			
Pyrene	0.666	0.369	55.4	41.0-120			
1,2,4-Trichlorobenzene	0.666	0.286	42.9	17.0-120			
4-Chloro-3-methylphenol	0.666	0.320	48.0	28.0-120			
2-Chlorophenol	0.666	0.354	53.2	28.0-120			
2,4-Dichlorophenol	0.666	0.293	44.0	25.0-120			
2,4-Dimethylphenol	0.666	0.315	47.3	15.0-120			
4,6-Dinitro-2-methylphenol	0.666	0.323	48.5	16.0-120			
2,4-Dinitrophenol	0.666	0.199	29.9	10.0-120			

Cardno - Peachtree Corners, GA

CHILOQIOU

SDG: L1393384

DATE/TIME: 09/03/21 16:09

PAGE: 66 of 72

QUALITY CONTROL SUMMARY

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3697831-1 08/28/21 20:41

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
2-Nitrophenol	0.666	0.295	44.3	20.0-120
4-Nitrophenol	0.666	0.372	55.9	27.0-120
Pentachlorophenol	0.666	0.308	46.2	29.0-120
Phenol	0.666	0.351	52.7	28.0-120
2,4,6-Trichlorophenol	0.666	0.339	50.9	37.0-120
(S) Nitrobenzene-d5			45.0	10.0-122
(S) 2-Fluorobiphenyl			48.6	15.0-120
(S) p-Terphenyl-d14			58.3	10.0-120
(S) Phenol-d5			51.5	10.0-120
(S) 2-Fluorophenol			51.4	12.0-120
(S) 2,4,6-Tribromophenol			53.8	10.0-127

L1393400-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393400-07 08/29/21 01:56 • (MS) R3697831-3 08/29/21 02:17 • (MSD) R3697831-4 08/29/21 02:37

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Acenaphthene	0.648	ND	0.388	0.323	48.6	40.6	1	18.0-120			18.4	32
Acenaphthylene	0.648	ND	0.402	0.339	48.4	40.7	1	25.0-120			17.0	32
Anthracene	0.648	ND	0.426	0.348	52.0	42.3	1	22.0-120			20.4	29
Benzidine	1.30	ND	ND	ND	0.000	0.000	1	10.0-120	<u>J6</u>	<u>J6</u>	0.000	40
Benzo(a)anthracene	0.648	0.0713	0.463	0.434	49.1	45.5	1	25.0-120			6.59	29
Benzo(b)fluoranthene	0.648	0.120	0.362	0.446	30.4	41.0	1	19.0-122			20.7	31
Benzo(k)fluoranthene	0.648	ND	0.314	0.391	34.6	44.3	1	23.0-120			21.7	30
Benzo(g,h,i)perylene	0.648	0.0445	0.195	0.272	18.8	28.6	1	10.0-120		<u>J3</u>	33.2	33
Benzo(a)pyrene	0.648	0.0726	0.314	0.394	30.3	40.4	1	24.0-120			22.6	30
Bis(2-chlorethoxy)methane	0.648	ND	ND	ND	37.8	37.8	1	10.0-120			0.409	34
Bis(2-chloroethyl)ether	0.648	ND	0.429	ND	53.7	47.7	1	10.0-120			12.2	40
2,2-Oxybis(1-Chloropropane)	0.648	ND	ND	ND	38.4	38.5	1	10.0-120			0.000	40
4-Bromophenyl-phenylether	0.648	ND	0.456	ND	57.1	46.9	1	27.0-120			19.9	30
2-Chloronaphthalene	0.648	ND	0.372	0.322	46.6	40.4	1	20.0-120			14.6	32
4-Chlorophenyl-phenylether	0.648	ND	0.429	ND	53.7	43.3	1	24.0-120			21.7	29
Chrysene	0.648	0.0664	0.435	0.404	46.2	42.4	1	21.0-120			7.34	29
Dibenz(a,h)anthracene	0.648	ND	0.211	0.295	24.8	35.4	1	10.0-120		<u>J3</u>	33.2	32
1,2-Dichlorobenzene	0.648	ND	ND	ND	36.3	37.3	1	10.0-120			2.52	38
1,3-Dichlorobenzene	0.648	ND	ND	ND	34.1	36.1	1	10.0-120			5.29	40
1,4-Dichlorobenzene	0.648	ND	ND	ND	34.1	36.1	1	10.0-120			5.29	39
3,3-Dichlorobenzidine	1.30	ND	ND	ND	12.5	17.4	1	10.0-120			31.5	34
2,4-Dinitrotoluene	0.648	ND	0.481	ND	60.2	51.4	1	30.0-120			16.1	31
A	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:	PAGE:

Cardno - Peachtree Corners, GA

CHILOQIOU

SDG: L1393384 DATE/TIME: 09/03/21 16:09 PAGE: 67 of 72

QUALITY CONTROL SUMMARY

L1393384-07,08,09

Тс

Ss

Cn

Sr

[´]Qc

GI

Â

Sc

L1393400-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393400-07 08/29/21 01:56 • (MS) R3697831-3 08/29/21 02:17 • (MSD) R3697831-4 08/29/21 02:37

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg				%	%		%			%	%	
2,6-Dinitrotoluene	0.648	ND	ND	ND	49.5	45.8	1	25.0-120			8.10	31	
Fluoranthene	0.648	0.153	0.604	0.453	56.5	37.8	1	18.0-126			28.4	32	
Fluorene	0.648	ND	0.424	0.345	51.9	42.2	1	25.0-120			20.5	30	
Hexachlorobenzene	0.648	ND	ND	ND	51.1	44.9	1	27.0-120			13.2	28	
Hexachloro-1,3-butadiene	0.648	ND	ND	ND	38.7	39.3	1	10.0-120			1.19	38	
Hexachlorocyclopentadiene	0.648	ND	ND	ND	2.76	4.21	1	10.0-120	<u>J6</u>	<u>J3 J6</u>	41.2	40	
Hexachloroethane	0.648	ND	ND	ND	29.5	30.8	1	10.0-120			4.10	40	
Indeno(1,2,3-cd)pyrene	0.648	0.0521	0.230	0.319	22.3	33.5	1	10.0-120		<u>J3</u>	32.3	32	
Isophorone	0.648	ND	ND	ND	41.8	40.6	1	13.0-120			3.38	34	
Naphthalene	0.648	ND	0.296	0.281	37.0	35.3	1	10.0-120			5.13	35	
Nitrobenzene	0.648	ND	ND	ND	38.3	36.2	1	10.0-120			5.81	36	
n-Nitrosodimethylamine	0.648	ND	ND	ND	0.000	39.6	1	10.0-127	<u>J6</u>	J <u>3</u>	200	40	
n-Nitrosodiphenylamine	0.648	ND	ND	ND	49.7	41.5	1	17.0-120			18.3	29	
n-Nitrosodi-n-propylamine	0.648	ND	ND	ND	42.7	42.7	1	10.0-120			0.362	37	
Phenanthrene	0.648	0.0799	0.516	0.389	54.7	38.9	1	17.0-120			28.0	31	
Benzylbutyl phthalate	0.648	ND	ND	ND	51.2	50.8	1	23.0-120			1.21	30	
Bis(2-ethylhexyl)phthalate	0.648	ND	0.415	0.419	52.0	52.6	1	17.0-126			0.886	30	
Di-n-butyl phthalate	0.648	ND	0.436	ND	54.6	44.6	1	30.0-120			20.6	29	
Diethyl phthalate	0.648	ND	0.460	ND	57.6	46.1	1	26.0-120			22.4	28	
Dimethyl phthalate	0.648	ND	ND	ND	41.4	43.0	1	25.0-120			3.66	29	
Di-n-octyl phthalate	0.648	ND	0.433	0.429	54.2	53.9	1	21.0-123			0.858	29	
Pyrene	0.648	0.110	0.461	0.431	43.9	40.3	1	16.0-121			6.63	32	
1,2,4-Trichlorobenzene	0.648	ND	ND	ND	38.1	37.3	1	12.0-120			2.46	37	
4-Chloro-3-methylphenol	0.648	ND	ND	ND	28.5	40.7	1	15.0-120		<u>J3</u>	34.8	30	
2-Chlorophenol	0.648	ND	ND	ND	43.1	43.0	1	15.0-120		_	0.359	37	
2,4-Dichlorophenol	0.648	ND	ND	ND	42.0	39.5	1	20.0-120			6.45	31	
2,4-Dimethylphenol	0.648	ND	ND	ND	39.8	40.4	1	10.0-120			1.16	33	
4,6-Dinitro-2-methylphenol	0.648	ND	0.421	ND	52.8	43.8	1	10.0-120			18.9	39	
2,4-Dinitrophenol	0.648	ND	ND	ND	46.0	37.9	1	10.0-121			19.5	40	
2-Nitrophenol	0.648	ND	ND	ND	42.1	39.8	1	12.0-120			6.04	39	
4-Nitrophenol	0.648	ND	0.525	0.421	65.7	52.9	1	10.0-137			21.9	32	
Pentachlorophenol	0.648	ND	0.524	0.433	65.6	54.3	1	10.0-160			19.1	31	
Phenol	0.648	ND	ND	ND	28.4	41.8	1	12.0-120			37.9	38	
2,4,6-Trichlorophenol	0.648	ND	0.444	ND	55.6	45.0	1	19.0-120			21.2	32	
(S) Nitrobenzene-d5					43.5	39.0		10.0-122					
(S) 2-Fluorobiphenyl					48.1	42.1		15.0-120					
(S) p-Terphenyl-d14					51.9	51.4		10.0-120					
(S) Phenol-d5					27.8	43.5		10.0-120					
(S) 2-Fluorophenol					43.8	44.4		12.0-120					
Δ	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
	achtree Corners,	GA						393384		09/03/2			68 of 72

QUALITY CONTROL SUMMARY

L1393384-07,08,09

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
(S) 2,4,6-Tribromophenol					64.8	54.3		10.0-127				

DATE/TIME: 09/03/21 16:09 PAGE: 69 of 72

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
С3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
Ρ	RPD between the primary and confirmatory analysis exceeded 40%.

SDG: L1393384 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1393384 Τс

Ss

Cn

Sr

Qc

Gl

AI

Company Name/Address:				Billing Info	rmation:						A	Analysis	/ Contai	ner / Pre	servative			Chain of Custody	Page of
Cardno - Peachtree Co	orners,	GA		Billing Info	Smit	hwic	k	Pres								1000		0	
6611 Bay Circle Suite 220 Peachtree Corners. GA 30071				6611 Bay Suite 220 Peachtre	y Circle			Chk	s								-	Pac	e Analytical [®]
Report to: William Smithwick				Email To: w	villiam.sm	ithwick(@cardno.com		oPre	F			100		2	100		12065 Lebanon Rd Mon Submitting a sample via constitutes acknowledg	
Project Description: Klamath Falls - Chiloquin, OR			City/State Collected: C	hiloguin	NOR		Please Ci PT MT C		zClr-N	ml/Sy			and the second se	/Syr				Pace Terms and Conditi https://info.pacelabs.co terms.pdf	ons found at:
Phone: 678-443-1199		Project HIL	# 00.100		Lab Proj CARDN		A-CHILOQ	UIN	0D 40	eOH10	es	res		H10ml				sbg # 5 C23	7 5389
Collected by (print): A Smithwick	Site/Fa	Facility ID #		P.O. #			-	SV827	40mlAmb/MeOH10ml/Syr	Ir-NoPr	CIr-NoF	Cir-Not	/MeO			Acctnum: CAI			
Collected by (signature):		Same D Next Da Two Da Three D	yS Day y10 Da ay	Day	Quote		s Needed	No. of	NWTPHDXNOSGT,SV8270D 4ozClr-NoPres	NWTPHGX 40mlA	PCBs - 8082 4o2Clr-NoPres	RCRA Metals 2ozClr-NoPres	TS 2ozClr-NoPres	V8260C 40mlAmb/MeOH10ml/Syr				Template: T19 Prelogin: P86 PM: 206 - Jeff C PB: D U Shipped Via: F	5914
Sample ID	Comp	o/Grab	Matrix *	Depth	Da	ite	Time	Cntrs	MN	MN	PCB	RCR.	TS 2	V82(Remarks	Sample # (lab only)
B-5	Gr	ab	SS	0-2'	8.1	1.21	1210	6	X	X	X	X	X	X					-01
B-6	4	F.	SS	0-2			1455	6	X	X	X	X	X	X		197			-02
B-7			SS	0-2			1425	6	X	X	X	X	X	X		and a second			-07
B-1			SS	2-4'			1650	5	x	X	ø	X	X	X					-04
B-8			SS	2.4'			1540	5	X	X	4	X	x	X					-09
B-9			SS	2-4'		4.	1400	5	X	x	100	X	X	X					-06
3-2		•	SS	0.2			1115	5	x	X	200	X	x	X					-07
B-3		-	SS	0-2			0001	5	X	X	12 17	X	X	X		1			-08
B-4			SS	0.2	-	1	1040	5	X	X		X	x	X		- Filli			-09
B-6 DUP		1	SS	0.2'	1	V	1500	X	the	14		4	X	X				Vocs only	-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks:					122202		স	F	CONSIGNATION OF		pH Flow		_ Temp _ Other		COC S: Bottle Correc	<u>Sample</u> eal Pre igned/A es arri ct bott	e Receipt Che sent/Intact: ccurate: ve intact: les used: olume sent:	ecklist NPN NN N N
OT - Other	Samples re UPS		Courier	ALC: A		Trackir	18#511	71	44	36	19	18				133.2		If Applicabl dspace:	
Relinquished by: (Signature)			te: 8.18.21	Time 16		Receiv	ed by: (Signat	ure)				Trip Blan	k Recei		s / No CL / MeoH BR	Prese	rvation	Correct/Che 0.5 mR/hr:	cked: Y _N ZY _N
Reinquished by : (Signature)		Da	te:	Time		Receiv	ed by: (Signat	ure)				Temp: 2.3-1	=2.2	C Bottle	s Received:	If prese	ervation i	required by Log	n: Date/Time
Relinquished by : (Signature)		Da	te:	Time	4	Receive	ed for lab by:	(Signatu	ure)	Ker	S.C.M.	Date: 3(27	2/2/	Time	00	Hold:		and the	Condition: NCF / OK
			2-			0		1		0		'							

Pace Analytical® ANALYTICAL REPORT September 03, 2021

Cardno - Peachtree Corners, GA

Sample Delivery Group: Samples Received: Project Number: Description:

L1393343 08/20/2021 **CHILOQIWA** Klamath Falls - Chiloquin, OR

Report To:

William Smithwick 6611 Bay Circle Suite 220 Peachtree Corners, GA 30071

Entire Report Reviewed By:

Vubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47 PAGE: 1 of 47 Тс

Ss

Cn

Sr

ʹQc

Gl

AI

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
TMW-1 L1393343-01	6
TMW-2 L1393343-02	9
TMW-3 L1393343-03	12
TMW-4 L1393343-04	15
TMW-5 L1393343-05	18
TMW-3 DUP L1393343-06	22
Qc: Quality Control Summary	24
Mercury by Method 7470A	24
Metals (ICP) by Method 6010D	25
Volatile Organic Compounds (GC) by Method NWTPHGX	26
Volatile Organic Compounds (GC/MS) by Method 8260D	27
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	37
Polychlorinated Biphenyls (GC) by Method 8082 A	40
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	41
GI: Glossary of Terms	45
Al: Accreditations & Locations	46
Sc: Sample Chain of Custody	47

PROJECT: CHILOQIWA SDG: L1393343 (

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
TMW-1 L1393343-01 GW			A. Smithwick	08/18/21 11:30	08/20/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1727654	1	08/24/21 11:03	08/25/21 12:09	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728184	1	08/24/21 12:32	08/26/21 18:54	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729112	1	08/25/21 13:11	08/25/21 13:11	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729044	1	08/26/21 04:42	08/26/21 04:42	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731462	2	08/30/21 23:41	08/31/21 23:30	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1728562	1	08/25/21 07:21	08/25/21 17:28	TMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TMW-2 L1393343-02 GW			A. Smithwick	08/18/21 09:10	08/20/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

date/time	date/time		
08/24/21 11:03	08/25/2112:20	ABL	Mt. Juliet, TN
08/24/2112:32	08/26/21 18:56	EL	Mt. Juliet, TN
08/25/21 13:34	08/25/21 13:34	JAH	Mt. Juliet, TN
08/25/21 23:46	08/25/21 23:46	ACG	Mt. Juliet, TN
08/30/21 23:41	08/31/21 23:56	DMG	Mt. Juliet, TN
08/25/21 07:21	08/25/21 17:51	TMM	Mt. Juliet, TN
	08/24/21 11:03 08/24/21 12:32 08/25/21 13:34 08/25/21 23:46 08/30/21 23:41	08/24/21 11:03 08/25/21 12:20 08/24/21 12:32 08/26/21 18:56 08/25/21 13:34 08/25/21 13:34 08/25/21 23:46 08/25/21 23:46 08/30/21 23:41 08/31/21 23:56	08/24/21 11:03 08/25/21 12:20 ABL 08/24/21 12:32 08/26/21 18:56 EL 08/25/21 13:34 08/25/21 13:34 JAH 08/25/21 23:46 08/25/21 23:46 ACG 08/30/21 23:41 08/31/21 23:56 DMG

TMW-3 L1393343-03 GW			Collected by A. Smithwick	Collected date/time 08/18/21 13:30	Received da 08/20/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1727654	1	08/24/21 11:03	08/25/21 12:23	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728184	1	08/24/2112:32	08/26/21 18:59	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729112	1	08/25/21 13:57	08/25/21 13:57	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729523	1	08/26/21 00:07	08/26/21 00:07	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731462	1	08/30/21 23:41	09/01/21 00:22	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1728562	1	08/25/21 07:21	08/25/21 18:13	TMM	Mt. Juliet, TN

TMW-4 L1393343-04 GW			Collected by A. Smithwick	Collected date/time 08/18/21 12:40	Received da 08/20/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1727654	1	08/24/21 11:03	08/25/21 12:25	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1728184	1	08/24/21 12:32	08/26/21 19:08	EL	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1729112	1	08/25/21 14:21	08/25/21 14:21	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729523	1	08/26/21 00:27	08/26/21 00:27	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1731877	1	08/30/21 17:55	08/31/21 15:19	WCR	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1728562	1	08/25/21 07:21	08/25/21 18:36	TMM	Mt. Juliet, TN

- MW-5 L1393343-05 GW			Collected by A. Smithwick	Collected date/time 08/18/21 10:20	Received da 08/20/21 09:	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
lercury by Method 7470A	WG1727654	1	08/24/21 11:03	08/25/21 12:27	ABL	Mt. Juliet, TN
letals (ICP) by Method 6010D	WG1728184	1	08/24/21 12:32	08/26/21 19:11	EL	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method NWTPHGX	WG1729112	1	08/25/21 14:44	08/25/21 14:44	JAH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260D	WG1729523	1	08/26/21 00:47	08/26/21 00:47	ACG	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1732559	1	09/01/21 06:43	09/01/21 11:24	DMG	Mt. Juliet, TN
olychlorinated Biphenyls (GC) by Method 8082 A	WG1732865	1.05	09/01/21 09:55	09/01/21 17:56	JMB	Mt. Juliet, TN
emi Volatile Organic Compounds (GC/MS) by Method 8270E	WG1728562	1	08/25/21 07:21	08/25/21 21:57	TMM	Mt. Juliet, TN

SDG:

L1393343

PROJECT:

CHILOQIWA

ACCOUNT:

Cardno - Peachtree Corners, GA

DATE/TIME:	PAGE:
09/03/21 09:47	3 of 47

Ср

²Tc

Ss

⁺Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

TMW-3 DUP L1393343-06 GW			Collected by A. Smithwick	Collected date/time 08/18/21 13:35	e Received da 08/20/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1729523	1	08/26/21 01:07	08/26/21 01:07	ACG	Mt. Juliet, TN

Ср

PROJECT: CHILOQIWA SDG: L1393343

(

PAGE: 4 of 47

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47 PAGE: 5 of 47

SAMPLE RESULTS - 01 L1393343

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		2
Mercury	ND		0.000200	1	08/25/2021 12:09	<u>WG1727654</u>	Tc

Metals (ICP) by Method 6010D

Metals (ICP) by I	Result	Qualifier	RDL	Dilution	Analysis	Patch	
Analyte	mg/l	Quaimer	mg/l	Dilution	date / time	<u>Batch</u>	
Arsenic	ND		0.0100	1	08/26/2021 18:54	WG1728184	
Barium	0.0256		0.00500	1	08/26/2021 18:54	WG1728184	
Cadmium	ND		0.00200	1	08/26/2021 18:54	WG1728184	
Chromium	ND		0.0100	1	08/26/2021 18:54	WG1728184	
.ead	ND		0.00600	1	08/26/2021 18:54	WG1728184	
Selenium	ND		0.0100	1	08/26/2021 18:54	WG1728184	
Silver	ND		0.00500	1	08/26/2021 18:54	<u>WG1728184</u>	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ÅI
Analyte	mg/l		mg/l		date / time	L	
Gasoline Range Organics-NWTPH	0.159	B	0.100	1	08/25/2021 13:11	WG1729112	9 50
(S) a,a,a-Trifluorotoluene(FID)	102		78.0-120		08/25/2021 13:11	WG1729112	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	08/26/2021 04:42	WG1729044
Acrylonitrile	ND		0.0100	1	08/26/2021 04:42	WG1729044
Benzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
Bromobenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
Bromodichloromethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
Bromoform	ND	<u>C3</u>	0.00100	1	08/26/2021 04:42	WG1729044
Bromomethane	ND	<u>C3</u>	0.00500	1	08/26/2021 04:42	WG1729044
n-Butylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
sec-Butylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
tert-Butylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
Carbon tetrachloride	ND		0.00100	1	08/26/2021 04:42	WG1729044
Chlorobenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
Chlorodibromomethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
Chloroethane	ND		0.00500	1	08/26/2021 04:42	WG1729044
Chloroform	ND		0.00500	1	08/26/2021 04:42	WG1729044
Chloromethane	ND		0.00250	1	08/26/2021 04:42	WG1729044
2-Chlorotoluene	ND		0.00100	1	08/26/2021 04:42	WG1729044
4-Chlorotoluene	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	0.00500	1	08/26/2021 04:42	WG1729044
1,2-Dibromoethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
Dibromomethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,2-Dichlorobenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,3-Dichlorobenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,4-Dichlorobenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044
Dichlorodifluoromethane	ND		0.00500	1	08/26/2021 04:42	WG1729044
1,1-Dichloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,2-Dichloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,1-Dichloroethene	ND		0.00100	1	08/26/2021 04:42	WG1729044
cis-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 04:42	WG1729044
trans-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,2-Dichloropropane	ND		0.00100	1	08/26/2021 04:42	WG1729044
1,1-Dichloropropene	ND		0.00100	1	08/26/2021 04:42	WG1729044

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47

TMW-1 Collected date/time: 08/18/21 11:30

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
1,3-Dichloropropane	ND		0.00100	1	08/26/2021 04:42	WG1729044	2.
cis-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
trans-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 04:42	WG1729044	3
2,2-Dichloropropane	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Di-isopropyl ether	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Ethylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	4
Hexachloro-1,3-butadiene	ND	<u>C3</u>	0.00100	1	08/26/2021 04:42	WG1729044	
Isopropylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	5
p-Isopropyltoluene	ND		0.00100	1	08/26/2021 04:42	WG1729044	5
2-Butanone (MEK)	ND		0.0100	1	08/26/2021 04:42	WG1729044	
Methylene Chloride	ND		0.00500	1	08/26/2021 04:42	WG1729044	6
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/26/2021 04:42	WG1729044	
Methyl tert-butyl ether	ND		0.00100	1	08/26/2021 04:42	WG1729044	7
Naphthalene	ND	<u>C3</u>	0.00500	1	08/26/2021 04:42	WG1729044	ľ
n-Propylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Styrene	ND		0.00100	1	08/26/2021 04:42	WG1729044	8
1,1,1,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044	
1,1,2,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044	9
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Tetrachloroethene	ND		0.00100	1	08/26/2021 04:42	WG1729044	L
Toluene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
1,2,3-Trichlorobenzene	ND	<u>C3</u>	0.00100	1	08/26/2021 04:42	WG1729044	
1,2,4-Trichlorobenzene	ND	<u>C3</u>	0.00100	1	08/26/2021 04:42	WG1729044	
1,1,1-Trichloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044	
1,1,2-Trichloroethane	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Trichloroethene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Trichlorofluoromethane	ND		0.00500	1	08/26/2021 04:42	WG1729044	
1,2,3-Trichloropropane	ND		0.00250	1	08/26/2021 04:42	WG1729044	
1,2,4-Trimethylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
1,2,3-Trimethylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
1,3,5-Trimethylbenzene	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Vinyl chloride	ND		0.00100	1	08/26/2021 04:42	WG1729044	
Xylenes, Total	ND		0.00300	1	08/26/2021 04:42	WG1729044	
(S) Toluene-d8	103		80.0-120		08/26/2021 04:42	WG1729044	
(S) 4-Bromofluorobenzene	87.9		77.0-126		08/26/2021 04:42	WG1729044	
(S) 1,2-Dichloroethane-d4	118		70.0-130		08/26/2021 04:42	WG1729044	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Diesel Range Organics (DRO)	ND		0.400	2	08/31/2021 23:30	WG1731462
Residual Range Organics (RRO)	ND		0.500	2	08/31/2021 23:30	WG1731462
(S) o-Terphenyl	47.8	J2	52.0-156		08/31/2021 23:30	WG1731462

Sample Narrative:

L1393343-01 WG1731462: Sample produced heavy emulsion during Extraction process, low surr/spike recoveries due to matrix

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Cardno - Peachtree Corners, GA

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l		date / time			
Acenaphthene	ND		0.00100	1	08/25/2021 17:28	WG1728562		
Acenaphthylene	ND		0.00100	1	08/25/2021 17:28	WG1728562		
Anthracene	ND		0.00100	1	08/25/2021 17:28	WG1728562		
Benzidine	ND	<u>J3 J4</u>	0.0100	1	08/25/2021 17:28	WG1728562		
Benzo(a)anthracene	ND		0.00100	1	08/25/2021 17:28	WG1728562		
ACC	OUNT:		PRO	JECT:	SDG:		DATE/TIME:	PAG

CHILOQIWA

L1393343

DATE/TIME: 09/03/21 09:47

PAGE: 7 of 47

TMW-1 Collected date/time: 08/18/21 11:30

SAMPLE RESULTS - 01 L1393343

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
Benzo(b)fluoranthene	ND		0.00100	1	08/25/2021 17:28	WG1728562	2_
Benzo(k)fluoranthene	ND		0.00100	1	08/25/2021 17:28		ŤΤ
				1		WG1728562	
Benzo(g,h,i)perylene	ND ND		0.00100	1	08/25/2021 17:28	WG1728562	³ S
Benzo(a)pyrene					08/25/2021 17:28	WG1728562	Ľ
Bis(2-chlorethoxy)methane	ND		0.0100	1	08/25/2021 17:28	WG1728562	4
Bis(2-chloroethyl)ether	ND		0.0100	1	08/25/2021 17:28	WG1728562	Ċ
2,2-Oxybis(1-Chloropropane)	ND		0.0100	1	08/25/2021 17:28	WG1728562	
4-Bromophenyl-phenylether	ND		0.0100	1	08/25/2021 17:28	WG1728562	⁵ S
2-Chloronaphthalene	ND		0.00100	1	08/25/2021 17:28	<u>WG1728562</u>	
4-Chlorophenyl-phenylether	ND		0.0100	1	08/25/2021 17:28	<u>WG1728562</u>	
Chrysene	ND		0.00100	1	08/25/2021 17:28	WG1728562	°C
Dibenz(a,h)anthracene	ND		0.00100	1	08/25/2021 17:28	WG1728562	L
3,3-Dichlorobenzidine	ND		0.0100	1	08/25/2021 17:28	WG1728562	7
2,4-Dinitrotoluene	ND		0.0100	1	08/25/2021 17:28	WG1728562	í G
2,6-Dinitrotoluene	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Fluoranthene	ND		0.00100	1	08/25/2021 17:28	WG1728562	⁸ A
Fluorene	ND		0.00100	1	08/25/2021 17:28	WG1728562	
Hexachlorobenzene	ND		0.00100	1	08/25/2021 17:28	WG1728562	٩
Hexachloro-1,3-butadiene	ND		0.0100	1	08/25/2021 17:28	WG1728562	ĨS
Hexachlorocyclopentadiene	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Hexachloroethane	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Indeno(1,2,3-cd)pyrene	ND		0.00100	1	08/25/2021 17:28	WG1728562	
Isophorone	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Naphthalene	ND		0.00100	1	08/25/2021 17:28	WG1728562	
Nitrobenzene	ND		0.0100	1	08/25/2021 17:28	WG1728562	
n-Nitrosodimethylamine	ND		0.0100	1	08/25/2021 17:28	WG1728562	
n-Nitrosodiphenylamine	ND		0.0100	1	08/25/2021 17:28	WG1728562	
n-Nitrosodi-n-propylamine	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Phenanthrene	ND		0.00100	1	08/25/2021 17:28	WG1728562	
	ND		0.00300	1			
Benzylbutyl phthalate					08/25/2021 17:28	WG1728562	
Bis(2-ethylhexyl)phthalate	ND		0.00300	1	08/25/2021 17:28	WG1728562	
Di-n-butyl phthalate	ND		0.00300	1	08/25/2021 17:28	WG1728562	
Diethyl phthalate	ND		0.00300	1	08/25/2021 17:28	WG1728562	
Dimethyl phthalate	ND		0.00300	1	08/25/2021 17:28	WG1728562	
Di-n-octyl phthalate	ND		0.00300	1	08/25/2021 17:28	<u>WG1728562</u>	
Pyrene	ND		0.00100	1	08/25/2021 17:28	WG1728562	
1,2,4-Trichlorobenzene	ND		0.0100	1	08/25/2021 17:28	<u>WG1728562</u>	
4-Chloro-3-methylphenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2-Chlorophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2,4-Dichlorophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2,4-Dimethylphenol	ND	<u>J3</u>	0.0100	1	08/25/2021 17:28	WG1728562	
4,6-Dinitro-2-methylphenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2,4-Dinitrophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2-Nitrophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
4-Nitrophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Pentachlorophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
Phenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
2,4,6-Trichlorophenol	ND		0.0100	1	08/25/2021 17:28	WG1728562	
(S) 2-Fluorophenol	27.7		10.0-120		08/25/2021 17:28	WG1728562	
(S) Phenol-d5	18.1		10.0-120		08/25/2021 17:28	WG1728562	
(S) Nitrobenzene-d5	51.6		10.0-120		08/25/2021 17:28	WG1728562	
(S) 2-Fluorobiphenyl	56.0		10.0-127		08/25/2021 17:28	WG1728562	
	55.7		10.0-155				
(S) 2,4,6-Tribromophenol	55.7		10.0-155		08/25/2021 17:28	WG1728562	

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47

Collected date/time: 08/18/21 09:10

SAMPLE RESULTS - 02 L1393343

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	mg/l		mg/l		date / time		2
Mercury	ND		0.000200	1	08/25/2021 12:20	WG1727654	Tc

Metals (ICP) by Method 6010D

Metals (ICP) by M	ethod 6010D						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Arsenic	ND		0.0100	1	08/26/2021 18:56	WG1728184	
Barium	0.0609		0.00500	1	08/26/2021 18:56	<u>WG1728184</u>	
Cadmium	ND		0.00200	1	08/26/2021 18:56	WG1728184	
Chromium	0.0118		0.0100	1	08/26/2021 18:56	WG1728184	
Lead	ND		0.00600	1	08/26/2021 18:56	WG1728184	
Selenium	ND		0.0100	1	08/26/2021 18:56	WG1728184	
Silver	ND		0.00500	1	08/26/2021 18:56	WG1728184	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	[®] Al
Analyte	mg/l		mg/l		date / time		
Gasoline Range Organics-NWTPH	0.115	B	0.100	1	08/25/202113:34	<u>WG1729112</u>	9 SC
(S) a,a,a-Trifluorotoluene(FID)	103		78.0-120		08/25/2021 13:34	WG1729112	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	08/25/2021 23:46	WG1729523
Acrylonitrile	ND		0.0100	1	08/25/2021 23:46	WG1729523
Benzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Bromobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Bromodichloromethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Bromoform	ND		0.00100	1	08/25/2021 23:46	WG1729523
Bromomethane	ND	<u>C3</u>	0.00500	1	08/25/2021 23:46	WG1729523
n-Butylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
sec-Butylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
tert-Butylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Carbon tetrachloride	ND		0.00100	1	08/25/2021 23:46	WG1729523
Chlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Chlorodibromomethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Chloroethane	ND		0.00500	1	08/25/2021 23:46	WG1729523
Chloroform	ND		0.00500	1	08/25/2021 23:46	WG1729523
Chloromethane	ND		0.00250	1	08/25/2021 23:46	WG1729523
2-Chlorotoluene	ND		0.00100	1	08/25/2021 23:46	WG1729523
4-Chlorotoluene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	08/25/2021 23:46	WG1729523
1,2-Dibromoethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Dibromomethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,2-Dichlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,3-Dichlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,4-Dichlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Dichlorodifluoromethane	ND		0.00500	1	08/25/2021 23:46	WG1729523
1,1-Dichloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,2-Dichloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,1-Dichloroethene	ND		0.00100	1	08/25/2021 23:46	WG1729523
cis-1,2-Dichloroethene	ND		0.00100	1	08/25/2021 23:46	WG1729523
trans-1,2-Dichloroethene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,2-Dichloropropane	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,1-Dichloropropene	ND		0.00100	1	08/25/2021 23:46	WG1729523

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

PAGE: 9 of 47

TMW-2 Collected date/time: 08/18/21 09:10

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
1,3-Dichloropropane	ND		0.00100	1	08/25/2021 23:46	WG1729523
cis-1,3-Dichloropropene	ND		0.00100	1	08/25/2021 23:46	WG1729523
trans-1,3-Dichloropropene	ND		0.00100	1	08/25/2021 23:46	WG1729523
2,2-Dichloropropane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Di-isopropyl ether	ND		0.00100	1	08/25/2021 23:46	WG1729523
Ethylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Hexachloro-1,3-butadiene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Isopropylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
p-lsopropyltoluene	ND		0.00100	1	08/25/2021 23:46	WG1729523
2-Butanone (MEK)	ND	<u>C3</u>	0.0100	1	08/25/2021 23:46	WG1729523
Methylene Chloride	ND		0.00500	1	08/25/2021 23:46	WG1729523
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/25/2021 23:46	WG1729523
Methyl tert-butyl ether	ND		0.00100	1	08/25/2021 23:46	WG1729523
Naphthalene	ND		0.00500	1	08/25/2021 23:46	WG1729523
n-Propylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Styrene	ND		0.00100	1	08/25/2021 23:46	WG1729523
I,1,1,2-Tetrachloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
I,1,2,2-Tetrachloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
I,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Tetrachloroethene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Toluene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,2,3-Trichlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
I,2,4-Trichlorobenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,1,1-Trichloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,1,2-Trichloroethane	ND		0.00100	1	08/25/2021 23:46	WG1729523
Trichloroethene	ND		0.00100	1	08/25/2021 23:46	WG1729523
Trichlorofluoromethane	ND		0.00500	1	08/25/2021 23:46	WG1729523
I,2,3-Trichloropropane	ND		0.00250	1	08/25/2021 23:46	WG1729523
1,2,4-Trimethylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
l,2,3-Trimethylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
1,3,5-Trimethylbenzene	ND		0.00100	1	08/25/2021 23:46	WG1729523
/inyl chloride	ND		0.00100	1	08/25/2021 23:46	WG1729523
Xylenes, Total	ND		0.00300	1	08/25/2021 23:46	WG1729523
(S) Toluene-d8	106		80.0-120		08/25/2021 23:46	WG1729523
(S) 4-Bromofluorobenzene	91.8		77.0-126		08/25/2021 23:46	WG1729523
(S) 1,2-Dichloroethane-d4	105		70.0-130		08/25/2021 23:46	WG1729523

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Diesel Range Organics (DRO)	ND		0.400	2	08/31/2021 23:56	WG1731462
Residual Range Organics (RRO)	ND		0.500	2	08/31/2021 23:56	WG1731462
(S) o-Terphenyl	35.7	<u>J2</u>	52.0-156		08/31/2021 23:56	WG1731462

Sample Narrative:

L1393343-02 WG1731462: Sample produced heavy emulsion during Extraction process, low surr/spike recoveries due to matrix

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Cardno - Peachtree Corners, GA

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Acenaphthene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Acenaphthylene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Anthracene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Benzidine	ND	<u>J3 J4</u>	0.0100	1	08/25/2021 17:51	WG1728562	
Benzo(a)anthracene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
ACC	OUNT:		PRO	JECT:	SDG:	DATE/TIME:	PAG

L1393343

CHILOQIWA

09/03/21 09:47

PAGE: 10 of 47

TMW-2 Collected date/time: 08/18/21 09:10

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l		date / time		
Benzo(b)fluoranthene	ND		0.00100	1	08/25/2021 17:51	WG1728562	2 To
Benzo(k)fluoranthene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Benzo(g,h,i)perylene	ND		0.00100	1	08/25/2021 17:51	WG1728562	3
Benzo(a)pyrene	ND		0.00100	1	08/25/2021 17:51	WG1728562	ິSs
Bis(2-chlorethoxy)methane	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Bis(2-chloroethyl)ether	ND		0.0100	1	08/25/2021 17:51	WG1728562	⁴ Cr
2,2-Oxybis(1-Chloropropane)	ND		0.0100	1	08/25/2021 17:51	WG1728562	0
4-Bromophenyl-phenylether	ND		0.0100	1	08/25/2021 17:51	WG1728562	5
2-Chloronaphthalene	ND		0.00100	1	08/25/2021 17:51	WG1728562	ິSr
4-Chlorophenyl-phenylether	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Chrysene	ND		0.00100	1	08/25/2021 17:51	WG1728562	⁶ Q
Dibenz(a,h)anthracene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
3,3-Dichlorobenzidine	ND		0.0100	1	08/25/2021 17:51	WG1728562	7
2,4-Dinitrotoluene	ND		0.0100	1	08/25/2021 17:51	WG1728562	Í GI
2,6-Dinitrotoluene	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Fluoranthene	ND		0.00100	1	08/25/2021 17:51	WG1728562	8
Fluorene	ND		0.00100	1	08/25/2021 17:51	WG1728562	Â
Hexachlorobenzene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Hexachloro-1,3-butadiene	ND		0.0100	1	08/25/2021 17:51	WG1728562	°Sc
Hexachlorocyclopentadiene	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Hexachloroethane	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Indeno(1,2,3-cd)pyrene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Isophorone	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Naphthalene	ND		0.00100	1	08/25/2021 17:51		
•	ND		0.00100	1	08/25/2021 17:51	WG1728562 WG1728562	
Nitrobenzene n-Nitrosodimethylamine	ND		0.0100	1	08/25/2021 17:51		
•				1		WG1728562	
n-Nitrosodiphenylamine	ND		0.0100		08/25/2021 17:51	WG1728562	
n-Nitrosodi-n-propylamine	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Phenanthrene	ND		0.00100	1	08/25/2021 17:51	WG1728562	
Benzylbutyl phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Bis(2-ethylhexyl)phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Di-n-butyl phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Diethyl phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Dimethyl phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Di-n-octyl phthalate	ND		0.00300	1	08/25/2021 17:51	WG1728562	
Pyrene	ND		0.00100	1	08/25/2021 17:51	<u>WG1728562</u>	
1,2,4-Trichlorobenzene	ND		0.0100	1	08/25/2021 17:51	WG1728562	
4-Chloro-3-methylphenol	ND		0.0100	1	08/25/2021 17:51	<u>WG1728562</u>	
2-Chlorophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
2,4-Dichlorophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
2,4-Dimethylphenol	ND	<u>J3</u>	0.0100	1	08/25/2021 17:51	WG1728562	
4,6-Dinitro-2-methylphenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
2,4-Dinitrophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
2-Nitrophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
4-Nitrophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Pentachlorophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
Phenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
2,4,6-Trichlorophenol	ND		0.0100	1	08/25/2021 17:51	WG1728562	
(S) 2-Fluorophenol	29.4		10.0-120		08/25/2021 17:51	WG1728562	
(S) Phenol-d5	19.4		10.0-120		08/25/2021 17:51	WG1728562	
(S) Nitrobenzene-d5	50.1		10.0-127		08/25/2021 17:51	WG1728562	
(S) 2-Fluorobiphenyl	39.7		10.0-130		08/25/2021 17:51	WG1728562	
(S) 2,4,6-Tribromophenol	46.8		10.0-155		08/25/2021 17:51	WG1728562	
(S) p-Terphenyl-d14	31.5		10.0-128		08/25/2021 17:51	WG1728562	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 11 of 47

Collected date/time: 08/18/21 13:30

SAMPLE RESULTS - 03 L1393343

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		 2
Mercury	ND		0.000200	1	08/25/2021 12:23	WG1727654	⁻Tc

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Arsenic	ND		0.0100	1	08/26/2021 18:59	WG1728184	
Barium	0.0383		0.00500	1	08/26/2021 18:59	WG1728184	
Cadmium	ND		0.00200	1	08/26/2021 18:59	WG1728184	
Chromium	ND		0.0100	1	08/26/2021 18:59	WG1728184	
Lead	0.0267		0.00600	1	08/26/2021 18:59	WG1728184	
Selenium	ND		0.0100	1	08/26/2021 18:59	WG1728184	
Silver	ND		0.00500	1	08/26/2021 18:59	WG1728184	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ÅI
Analyte	mg/l		mg/l		date / time		
Gasoline Range Organics-NWTPH	ND		0.100	1	08/25/2021 13:57	<u>WG1729112</u>	9 50
(S) a,a,a-Trifluorotoluene(FID)	98.7		78.0-120		08/25/2021 13:57	WG1729112	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	08/26/2021 00:07	WG1729523
Acrylonitrile	ND		0.0100	1	08/26/2021 00:07	WG1729523
Benzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
Bromobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
Bromodichloromethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
Bromoform	ND		0.00100	1	08/26/2021 00:07	WG1729523
Bromomethane	ND	<u>C3</u>	0.00500	1	08/26/2021 00:07	WG1729523
n-Butylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
sec-Butylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
tert-Butylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
Carbon tetrachloride	ND		0.00100	1	08/26/2021 00:07	WG1729523
Chlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
Chlorodibromomethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
Chloroethane	ND		0.00500	1	08/26/2021 00:07	WG1729523
Chloroform	ND		0.00500	1	08/26/2021 00:07	WG1729523
Chloromethane	ND		0.00250	1	08/26/2021 00:07	WG1729523
2-Chlorotoluene	ND		0.00100	1	08/26/2021 00:07	WG1729523
4-Chlorotoluene	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	08/26/2021 00:07	WG1729523
1,2-Dibromoethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
Dibromomethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,2-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,3-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,4-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523
Dichlorodifluoromethane	ND		0.00500	1	08/26/2021 00:07	WG1729523
1,1-Dichloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,2-Dichloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,1-Dichloroethene	ND		0.00100	1	08/26/2021 00:07	WG1729523
cis-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:07	WG1729523
trans-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:07	WG1729523
1,1-Dichloropropene	ND		0.00100	1	08/26/2021 00:07	WG1729523

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343 DATE/TIME:

PAGE: 12 of 47

3

TMW-3 Collected date/time: 08/18/21 13:30

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	i i (
Analyte	mg/l		mg/l		date / time		
1,3-Dichloropropane	ND		0.00100	1	08/26/2021 00:07	WG1729523	2
cis-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
trans-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:07	WG1729523	3
2,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:07	WG1729523	Ĵ
Di-isopropyl ether	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Ethylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	4
Hexachloro-1,3-butadiene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Isopropylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	5
p-Isopropyltoluene	ND		0.00100	1	08/26/2021 00:07	WG1729523	5
2-Butanone (MEK)	ND	<u>C3</u>	0.0100	1	08/26/2021 00:07	WG1729523	
Methylene Chloride	ND		0.00500	1	08/26/2021 00:07	WG1729523	6
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/26/2021 00:07	WG1729523	L
Methyl tert-butyl ether	ND		0.00100	1	08/26/2021 00:07	WG1729523	7
Naphthalene	ND		0.00500	1	08/26/2021 00:07	WG1729523	Í
n-Propylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Styrene	ND		0.00100	1	08/26/2021 00:07	WG1729523	8
1,1,1,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,1,2,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523	9
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Tetrachloroethene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Toluene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,2,3-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,2,4-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,1,1-Trichloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,1,2-Trichloroethane	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Trichloroethene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Trichlorofluoromethane	ND		0.00500	1	08/26/2021 00:07	WG1729523	
1,2,3-Trichloropropane	ND		0.00250	1	08/26/2021 00:07	<u>WG1729523</u>	
1,2,4-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
1,2,3-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:07	<u>WG1729523</u>	
1,3,5-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Vinyl chloride	ND		0.00100	1	08/26/2021 00:07	WG1729523	
Xylenes, Total	ND		0.00300	1	08/26/2021 00:07	WG1729523	
(S) Toluene-d8	108		80.0-120		08/26/2021 00:07	WG1729523	
(S) 4-Bromofluorobenzene	98.6		77.0-126		08/26/2021 00:07	WG1729523	
(S) 1,2-Dichloroethane-d4	106		70.0-130		08/26/2021 00:07	WG1729523	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Decult	Qualifian	וחח	Dilution	Analysia	Datah
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Diesel Range Organics (DRO)	ND		0.200	1	09/01/2021 00:22	WG1731462
Residual Range Organics (RRO)	ND		0.250	1	09/01/2021 00:22	WG1731462
(S) o-Terphenyl	57.0		52.0-156		09/01/2021 00:22	WG1731462

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acenaphthene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Acenaphthylene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Anthracene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Benzidine	ND	<u>J3 J4</u>	0.0100	1	08/25/2021 18:13	WG1728562
Benzo(a)anthracene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Benzo(b)fluoranthene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Benzo(k)fluoranthene	ND		0.00100	1	08/25/2021 18:13	WG1728562
Benzo(g,h,i)perylene	ND		0.00100	1	08/25/2021 18:13	WG1728562

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIWA SDG: L1393343

TMW-3

Collected date/time: 08/18/21 13:30

SAMPLE RESULTS - 03

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
Benzo(a)pyrene	ND		0.00100	1	08/25/2021 18:13	WG1728562	2
is(2-chlorethoxy)methane	ND		0.0100	1	08/25/2021 18:13	WG1728562	۷.
is(2-chloroethyl)ether	ND		0.0100	1	08/25/2021 18:13	WG1728562	
,2-Oxybis(1-Chloropropane)	ND		0.0100	1	08/25/2021 18:13	WG1728562	3
-Bromophenyl-phenylether	ND		0.0100	1	08/25/2021 18:13	WG1728562	
			0.00100	1		WG1728562	4
-Chloronaphthalene	ND		0.00100		08/25/2021 18:13		ī
-Chlorophenyl-phenylether	ND		0.00100	1	08/25/2021 18:13	WG1728562	
hrysene	ND				08/25/2021 18:13	WG1728562	5
ibenz(a,h)anthracene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
,3-Dichlorobenzidine	ND		0.0100	1	08/25/2021 18:13	WG1728562	6
,4-Dinitrotoluene	ND		0.0100	1	08/25/2021 18:13	WG1728562	Ŭ
,6-Dinitrotoluene	ND		0.0100	1	08/25/2021 18:13	WG1728562	
uoranthene	ND		0.00100	1	08/25/2021 18:13	WG1728562	7
uorene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
exachlorobenzene	ND		0.00100	1	08/25/2021 18:13	WG1728562	•
exachloro-1,3-butadiene	ND		0.0100	1	08/25/2021 18:13	WG1728562	8
exachlorocyclopentadiene	ND		0.0100	1	08/25/2021 18:13	<u>WG1728562</u>	L
exachloroethane	ND		0.0100	1	08/25/2021 18:13	WG1728562	9
deno(1,2,3-cd)pyrene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
ophorone	ND		0.0100	1	08/25/2021 18:13	WG1728562	
aphthalene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
trobenzene	ND		0.0100	1	08/25/2021 18:13	WG1728562	
Nitrosodimethylamine	ND		0.0100	1	08/25/2021 18:13	WG1728562	
Nitrosodiphenylamine	ND		0.0100	1	08/25/2021 18:13	WG1728562	
Nitrosodi-n-propylamine	ND		0.0100	1	08/25/2021 18:13	WG1728562	
nenanthrene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
enzylbutyl phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
is(2-ethylhexyl)phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
i-n-butyl phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
iethyl phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
imethyl phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
i-n-octyl phthalate	ND		0.00300	1	08/25/2021 18:13	WG1728562	
yrene	ND		0.00100	1	08/25/2021 18:13	WG1728562	
2,4-Trichlorobenzene	ND		0.0100	1	08/25/2021 18:13	WG1728562	
-Chloro-3-methylphenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
-Chlorophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
4-Dichlorophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
,4-Dimethylphenol	ND	<u>J3</u>	0.0100	1	08/25/2021 18:13	WG1728562	
6-Dinitro-2-methylphenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
4-Dinitrophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
-Nitrophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
-Nitrophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
entachlorophenol	ND		0.0100	1	08/25/2021 18:13	WG1728562	
				1			
nenol 4,6-Trichlorophenol	ND ND		0.0100 0.0100		08/25/2021 18:13 08/25/2021 18:13	WG1728562 WG1728562	
•				1			
(S) 2-Fluorophenol	27.5		10.0-120		08/25/2021 18:13	WG1728562	
(S) Phenol-d5	18.6		10.0-120		08/25/2021 18:13	WG1728562	
(S) Nitrobenzene-d5	49.4		10.0-127		08/25/2021 18:13	WG1728562	
(S) 2-Fluorobiphenyl	51.8		10.0-130		08/25/2021 18:13	WG1728562	
(S) 2,4,6-Tribromophenol	47.7		10.0-155		08/25/2021 18:13	WG1728562	

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

Collected date/time: 08/18/21 12:40

SAMPLE RESULTS - 04 L1393343

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		2
Mercury	ND		0.000200	1	08/25/2021 12:25	WG1727654	⁻Tc

Metals (ICP) by Method 6010D

Metals (ICP) by I	Method 6010D						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/l		mg/l		date / time		4
Arsenic	ND		0.0100	1	08/26/2021 19:08	WG1728184	
Barium	0.00910		0.00500	1	08/26/2021 19:08	<u>WG1728184</u>	4
Cadmium	ND		0.00200	1	08/26/2021 19:08	<u>WG1728184</u>	
Chromium	ND		0.0100	1	08/26/2021 19:08	<u>WG1728184</u>	
Lead	ND		0.00600	1	08/26/2021 19:08	<u>WG1728184</u>	e
Selenium	ND		0.0100	1	08/26/2021 19:08	<u>WG1728184</u>	
Silver	ND		0.00500	1	08/26/2021 19:08	WG1728184	7

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ÅI
Analyte	mg/l		mg/l		date / time		
Gasoline Range Organics-NWTPH	ND		0.100	1	08/25/2021 14:21	WG1729112	9 SC
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		08/25/2021 14:21	<u>WG1729112</u>	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	08/26/2021 00:27	WG1729523
Acrylonitrile	ND		0.0100	1	08/26/2021 00:27	WG1729523
Benzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
Bromobenzene	ND		0.00100	1	08/26/2021 00:27	<u>WG1729523</u>
Bromodichloromethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
Bromoform	ND		0.00100	1	08/26/2021 00:27	<u>WG1729523</u>
Bromomethane	ND	<u>C3</u>	0.00500	1	08/26/2021 00:27	WG1729523
n-Butylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
sec-Butylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
tert-Butylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
Carbon tetrachloride	ND		0.00100	1	08/26/2021 00:27	WG1729523
Chlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
Chlorodibromomethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
Chloroethane	ND		0.00500	1	08/26/2021 00:27	WG1729523
Chloroform	ND		0.00500	1	08/26/2021 00:27	WG1729523
Chloromethane	ND		0.00250	1	08/26/2021 00:27	WG1729523
2-Chlorotoluene	ND		0.00100	1	08/26/2021 00:27	WG1729523
4-Chlorotoluene	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	08/26/2021 00:27	WG1729523
1,2-Dibromoethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
Dibromomethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,2-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,3-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,4-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523
Dichlorodifluoromethane	ND		0.00500	1	08/26/2021 00:27	WG1729523
1,1-Dichloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,2-Dichloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,1-Dichloroethene	ND		0.00100	1	08/26/2021 00:27	WG1729523
cis-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:27	WG1729523
trans-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:27	WG1729523
1,1-Dichloropropene	ND		0.00100	1	08/26/2021 00:27	WG1729523

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

PAGE: 15 of 47

TMW-4

Collected date/time: 08/18/21 12:40

SAMPLE RESULTS - 04 L1393343

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		L
1,3-Dichloropropane	ND		0.00100	1	08/26/2021 00:27	WG1729523	2
cis-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:27	WG1729523	L
trans-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:27	WG1729523	3
2,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:27	WG1729523	
Di-isopropyl ether	ND		0.00100	1	08/26/2021 00:27	WG1729523	
Ethylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	4
Hexachloro-1,3-butadiene	ND		0.00100	1	08/26/2021 00:27	WG1729523	L
lsopropylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	5
o-Isopropyltoluene	ND		0.00100	1	08/26/2021 00:27	WG1729523	2
2-Butanone (MEK)	ND	<u>C3</u>	0.0100	1	08/26/2021 00:27	WG1729523	
Methylene Chloride	ND		0.00500	1	08/26/2021 00:27	WG1729523	e
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/26/2021 00:27	WG1729523	L
Methyl tert-butyl ether	ND		0.00100	1	08/26/2021 00:27	WG1729523	E
Naphthalene	ND		0.00500	1	08/26/2021 00:27	WG1729523	
n-Propylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
Styrene	ND		0.00100	1	08/26/2021 00:27	WG1729523	8
,1,1,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,1,2,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523	4
,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523	
letrachloroethene	ND		0.00100	1	08/26/2021 00:27	WG1729523	L
Foluene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
l,2,3-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,2,4-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,1,1-Trichloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,1,2-Trichloroethane	ND		0.00100	1	08/26/2021 00:27	WG1729523	
Trichloroethene	ND		0.00100	1	08/26/2021 00:27	<u>WG1729523</u>	
Frichlorofluoromethane	ND		0.00500	1	08/26/2021 00:27	WG1729523	
,2,3-Trichloropropane	ND		0.00250	1	08/26/2021 00:27	WG1729523	
1,2,4-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,2,3-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
,3,5-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:27	WG1729523	
/inyl chloride	ND		0.00100	1	08/26/2021 00:27	<u>WG1729523</u>	
Xylenes, Total	ND		0.00300	1	08/26/2021 00:27	WG1729523	
(S) Toluene-d8	112		80.0-120		08/26/2021 00:27	<u>WG1729523</u>	
(S) 4-Bromofluorobenzene	103		77.0-126		08/26/2021 00:27	WG1729523	
(S) 1,2-Dichloroethane-d4	100		70.0-130		08/26/2021 00:27	WG1729523	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	D 11	0 110	221	D		D
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Diesel Range Organics (DRO)	ND	<u>J3</u>	0.200	1	08/31/2021 15:19	WG1731877
Residual Range Organics (RRO)	ND		0.250	1	08/31/2021 15:19	WG1731877
(S) o-Terphenyl	79.5		52.0-156		08/31/2021 15:19	WG1731877

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acenaphthene	ND		0.00100	1	08/25/2021 18:36	<u>WG1728562</u>
Acenaphthylene	ND		0.00100	1	08/25/2021 18:36	<u>WG1728562</u>
Anthracene	ND		0.00100	1	08/25/2021 18:36	WG1728562
Benzidine	ND	<u>J3 J4</u>	0.0100	1	08/25/2021 18:36	<u>WG1728562</u>
Benzo(a)anthracene	ND		0.00100	1	08/25/2021 18:36	WG1728562
Benzo(b)fluoranthene	ND		0.00100	1	08/25/2021 18:36	<u>WG1728562</u>
Benzo(k)fluoranthene	ND		0.00100	1	08/25/2021 18:36	<u>WG1728562</u>
Benzo(g,h,i)perylene	ND		0.00100	1	08/25/2021 18:36	WG1728562

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

PAGE: 16 of 47

TMW-4

Collected date/time: 08/18/21 12:40

SAMPLE RESULTS - 04

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l		date / time		
Benzo(a)pyrene	ND		0.00100	1	08/25/2021 18:36	WG1728562	^{2}T
Bis(2-chlorethoxy)methane	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Bis(2-chloroethyl)ether	ND		0.0100	1	08/25/2021 18:36	WG1728562	3
2,2-Oxybis(1-Chloropropane)	ND		0.0100	1	08/25/2021 18:36	WG1728562	ľS
4-Bromophenyl-phenylether	ND		0.0100	1	08/25/2021 18:36	WG1728562	
2-Chloronaphthalene	ND		0.00100	1	08/25/2021 18:36	WG1728562	⁴ C
4-Chlorophenyl-phenylether	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Chrysene	ND		0.00100	1	08/25/2021 18:36	WG1728562	5_
Dibenz(a,h)anthracene	ND		0.00100	1	08/25/2021 18:36	WG1728562	ຶS
3,3-Dichlorobenzidine	ND		0.0100	1	08/25/2021 18:36	WG1728562	
2,4-Dinitrotoluene	ND		0.0100	1	08/25/2021 18:36	WG1728562	⁶ C
2,6-Dinitrotoluene	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Fluoranthene	ND		0.00100	1	08/25/2021 18:36	WG1728562	7
Fluorene	ND		0.00100	1	08/25/2021 18:36	WG1728562	G
Hexachlorobenzene	ND		0.00100	1	08/25/2021 18:36	WG1728562	
Hexachloro-1,3-butadiene	ND		0.0100	1	08/25/2021 18:36	WG1728562	⁸ A
Hexachlorocyclopentadiene	ND		0.0100	1	08/25/2021 18:36	WG1728562	17
Hexachloroethane	ND		0.0100	1	08/25/2021 18:36	WG1728562	Q
ndeno(1,2,3-cd)pyrene	ND		0.00100	1	08/25/2021 18:36	WG1728562	°S
sophorone	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Naphthalene	ND		0.00100	1	08/25/2021 18:36	WG1728562	
litrobenzene	ND		0.0100	1	08/25/2021 18:36	WG1728562	
n-Nitrosodimethylamine	ND		0.0100	1	08/25/2021 18:36	WG1728562	
n-Nitrosodiphenylamine	ND		0.0100	1	08/25/2021 18:36	WG1728562	
n-Nitrosodi-n-propylamine	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Phenanthrene	ND		0.00100	1	08/25/2021 18:36	WG1728562	
Benzylbutyl phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Bis(2-ethylhexyl)phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Di-n-butyl phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Diethyl phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Dimethyl phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Di-n-octyl phthalate	ND		0.00300	1	08/25/2021 18:36	WG1728562	
Pyrene	ND		0.00100	1	08/25/2021 18:36	WG1728562	
I,2,4-Trichlorobenzene	ND		0.0100	1	08/25/2021 18:36	WG1728562	
4-Chloro-3-methylphenol	ND			1	08/25/2021 18:36		
2-Chlorophenol	ND		0.0100	1	08/25/2021 18:36	<u>WG1/28562</u> WG1728562	
2,4-Dichlorophenol	ND		0.0100	1	08/25/2021 18:36	WG1725562 WG1728562	
		13		1	08/25/2021 18:36		
2,4-Dimethylphenol	ND	<u>J3</u>	0.0100 0.0100		08/25/2021 18:36	WG1728562	
4,6-Dinitro-2-methylphenol	ND			1		WG1728562	
2,4-Dinitrophenol	ND		0.0100	1	08/25/2021 18:36 08/25/2021 18:36	WG1728562	
2-Nitrophenol	ND		0.0100	1		WG1728562	
1-Nitrophenol	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Pentachlorophenol	ND		0.0100	1	08/25/2021 18:36	WG1728562	
Phenol	ND		0.0100	1	08/25/2021 18:36	WG1728562	
2,4,6-Trichlorophenol	ND		0.0100	1	08/25/2021 18:36	WG1728562	
(S) 2-Fluorophenol	28.9		10.0-120		08/25/2021 18:36	WG1728562	
(S) Phenol-d5	18.3		10.0-120		08/25/2021 18:36	<u>WG1728562</u>	
(S) Nitrobenzene-d5	49.6		10.0-127		08/25/2021 18:36	<u>WG1728562</u>	
(S) 2-Fluorobiphenyl	56.1		10.0-130		08/25/2021 18:36	<u>WG1728562</u>	
(S) 2,4,6-Tribromophenol	54.2		10.0-155		08/25/2021 18:36	WG1728562	
(S) p-Terphenyl-d14	61.4		10.0-128		08/25/2021 18:36	WG1728562	

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 17 of 47

Collected date/time: 08/18/21 10:20

SAMPLE RESULTS - 05

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		2
Mercury	ND		0.000200	1	08/25/2021 12:27	<u>WG1727654</u>	Tc

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Arsenic	ND		0.0100	1	08/26/2021 19:11	WG1728184	
Barium	0.0919		0.00500	1	08/26/2021 19:11	WG1728184	
Cadmium	ND		0.00200	1	08/26/2021 19:11	WG1728184	
Chromium	0.0140		0.0100	1	08/26/2021 19:11	WG1728184	
Lead	ND		0.00600	1	08/26/2021 19:11	WG1728184	
Selenium	ND		0.0100	1	08/26/2021 19:11	WG1728184	
Silver	ND		0.00500	1	08/26/2021 19:11	<u>WG1728184</u>	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	mg/l		mg/l		date / time		
Gasoline Range Organics-NWTPH	ND		0.100	1	08/25/2021 14:44	<u>WG1729112</u>	9 S C
(S) a,a,a-Trifluorotoluene(FID)	101		78.0-120		08/25/2021 14:44	WG1729112	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	08/26/2021 00:47	WG1729523
Acrylonitrile	ND		0.0100	1	08/26/2021 00:47	WG1729523
Benzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
Bromobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
Bromodichloromethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
Bromoform	ND		0.00100	1	08/26/2021 00:47	WG1729523
Bromomethane	ND	<u>C3</u>	0.00500	1	08/26/2021 00:47	WG1729523
n-Butylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
sec-Butylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
tert-Butylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
Carbon tetrachloride	ND		0.00100	1	08/26/2021 00:47	WG1729523
Chlorobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
Chlorodibromomethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
Chloroethane	ND		0.00500	1	08/26/2021 00:47	WG1729523
Chloroform	ND		0.00500	1	08/26/2021 00:47	WG1729523
Chloromethane	ND		0.00250	1	08/26/2021 00:47	WG1729523
2-Chlorotoluene	ND		0.00100	1	08/26/2021 00:47	WG1729523
4-Chlorotoluene	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	08/26/2021 00:47	WG1729523
1,2-Dibromoethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
Dibromomethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,2-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,3-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,4-Dichlorobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523
Dichlorodifluoromethane	ND		0.00500	1	08/26/2021 00:47	WG1729523
1,1-Dichloroethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,2-Dichloroethane	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,1-Dichloroethene	ND		0.00100	1	08/26/2021 00:47	WG1729523
cis-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:47	WG1729523
trans-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:47	WG1729523
1,1-Dichloropropene	ND		0.00100	1	08/26/2021 00:47	WG1729523

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE:

18 of 47

1

TMW-5 Collected date/time: 08/18/21 10:20

SAMPLE RESULTS - 05

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	mg/l		mg/l		date / time		
l,3-Dichloropropane	ND		0.00100	1	08/26/2021 00:47	WG1729523	2_
cis-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
trans-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 00:47	WG1729523	3
2,2-Dichloropropane	ND		0.00100	1	08/26/2021 00:47	WG1729523	Ĩ
Di-isopropyl ether	ND		0.00100	1	08/26/2021 00:47	WG1729523	
Ethylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	4
Hexachloro-1,3-butadiene	ND		0.00100	1	08/26/2021 00:47	WG1729523	Ľ
Isopropylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	5
p-Isopropyltoluene	ND		0.00100	1	08/26/2021 00:47	WG1729523	5
2-Butanone (MEK)	ND	<u>C3</u>	0.0100	1	08/26/2021 00:47	WG1729523	
Methylene Chloride	ND		0.00500	1	08/26/2021 00:47	WG1729523	6
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/26/2021 00:47	WG1729523	
Methyl tert-butyl ether	ND		0.00100	1	08/26/2021 00:47	WG1729523	7
Naphthalene	ND		0.00500	1	08/26/2021 00:47	WG1729523	Í
n-Propylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
Styrene	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	8
1,1,1,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:47	WG1729523	
1,1,2,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	9
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/26/2021 00:47	WG1729523	ľ
Tetrachloroethene	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	
Toluene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
1,2,3-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	
1,2,4-Trichlorobenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
1,1,1-Trichloroethane	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	
1,1,2-Trichloroethane	ND		0.00100	1	08/26/2021 00:47	WG1729523	
Trichloroethene	ND		0.00100	1	08/26/2021 00:47	<u>WG1729523</u>	
Trichlorofluoromethane	ND		0.00500	1	08/26/2021 00:47	WG1729523	
1,2,3-Trichloropropane	ND		0.00250	1	08/26/2021 00:47	<u>WG1729523</u>	
1,2,4-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
1,2,3-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
1,3,5-Trimethylbenzene	ND		0.00100	1	08/26/2021 00:47	WG1729523	
Vinyl chloride	ND		0.00100	1	08/26/2021 00:47	WG1729523	
Xylenes, Total	ND		0.00300	1	08/26/2021 00:47	WG1729523	
(S) Toluene-d8	110		80.0-120		08/26/2021 00:47	WG1729523	
(S) 4-Bromofluorobenzene	101		77.0-126		08/26/2021 00:47	WG1729523	
(S) 1,2-Dichloroethane-d4	105		70.0-130		08/26/2021 00:47	WG1729523	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Diesel Range Organics (DRO)	ND		0.200	1	09/01/2021 11:24	WG1732559
Residual Range Organics (RRO)	ND		0.250	1	09/01/2021 11:24	WG1732559
(S) o-Terphenyl	61.6		52.0-156		09/01/2021 11:24	WG1732559

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
PCB 1016	ND	<u>J3 J4</u>	0.000525	1.05	09/01/2021 17:56	WG1732865
PCB 1221	ND		0.000525	1.05	09/01/2021 17:56	<u>WG1732865</u>
PCB 1232	ND		0.000525	1.05	09/01/2021 17:56	<u>WG1732865</u>
PCB 1242	ND		0.000525	1.05	09/01/2021 17:56	<u>WG1732865</u>
PCB 1248	ND		0.000525	1.05	09/01/2021 17:56	WG1732865
PCB 1254	ND		0.000525	1.05	09/01/2021 17:56	<u>WG1732865</u>
PCB 1260	ND		0.000525	1.05	09/01/2021 17:56	WG1732865
(S) Decachlorobiphenyl	84.0		10.0-128		09/01/2021 17:56	<u>WG1732865</u>

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIWA SDG: L1393343

TMW-5

SAMPLE RESULTS - 05

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	'Ср
Analyte	mg/l		mg/l		date / time		
(S) Tetrachloro-m-xylene	104		10.0-127		09/01/2021 17:56	WG1732865	² Tc

Sample Narrative:

L1393343-05 WG1732865: Dilution due to sample volume.

Collected date/time: 08/18/21 10:20

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Acenaphthene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
Acenaphthylene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
Inthracene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
Benzidine	ND	<u>J3 J4</u>	0.0100	1	08/25/2021 21:57	WG1728562	
Benzo(a)anthracene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
Benzo(b)fluoranthene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
Benzo(k)fluoranthene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
enzo(g,h,i)perylene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
lenzo(a)pyrene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
is(2-chlorethoxy)methane	ND		0.0100	1	08/25/2021 21:57	WG1728562	
is(2-chloroethyl)ether	ND		0.0100	1	08/25/2021 21:57	WG1728562	
,2-Oxybis(1-Chloropropane)	ND		0.0100	1	08/25/2021 21:57	WG1728562	
-Bromophenyl-phenylether	ND		0.0100	1	08/25/2021 21:57	WG1728562	
-Chloronaphthalene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
-Chlorophenyl-phenylether	ND		0.0100	1	08/25/2021 21:57	WG1728562	
hrysene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
ibenz(a,h)anthracene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
3-Dichlorobenzidine	ND		0.0100	1	08/25/2021 21:57	WG1728562	
4-Dinitrotoluene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
6-Dinitrotoluene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
uoranthene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
uorene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
exachlorobenzene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
exachloro-1,3-butadiene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
exachlorocyclopentadiene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
exachloroethane	ND		0.0100	1	08/25/2021 21:57	WG1728562	
ideno(1,2,3-cd)pyrene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
ophorone	ND		0.0100	1	08/25/2021 21:57	WG1728562	
aphthalene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
itrobenzene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
-Nitrosodimethylamine	ND		0.0100	1	08/25/2021 21:57	WG1728562	
-Nitrosodiphenylamine	ND		0.0100	1	08/25/2021 21:57	WG1728562	
Nitrosodi-n-propylamine	ND		0.0100	1	08/25/2021 21:57	WG1728562	
	ND		0.00100	1	08/25/2021 21:57	WG1728562	
henanthrene							
enzylbutyl phthalate	ND		0.00300	1	08/25/2021 21:57	WG1728562	
is(2-ethylhexyl)phthalate	ND			1	08/25/2021 21:57	WG1728562	
i-n-butyl phthalate	ND		0.00300	1	08/25/2021 21:57	WG1728562	
iethyl phthalate	ND		0.00300	1	08/25/2021 21:57	WG1728562	
imethyl phthalate	ND		0.00300	1	08/25/2021 21:57	WG1728562	
i-n-octyl phthalate	ND		0.00300	1	08/25/2021 21:57	WG1728562	
yrene	ND		0.00100	1	08/25/2021 21:57	WG1728562	
2,4-Trichlorobenzene	ND		0.0100	1	08/25/2021 21:57	WG1728562	
Chloro-3-methylphenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
-Chlorophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
,4-Dichlorophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
,4-Dimethylphenol	ND	<u>J3</u>	0.0100	1	08/25/2021 21:57	WG1728562	
,6-Dinitro-2-methylphenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
,4-Dinitrophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	

Cardno - Peachtree Corners, GA

CHILOQIWA

L1393343

DATE/TIME: 09/03/21 09:47 PAGE: 20 of 47

³Ss ¹Cn ⁵Sr ²Qc

Â

TMW-5

Collected date/time: 08/18/21 10:20

SAMPLE RESULTS - 05

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result	Qualifier	RDL	Dilution	Analysis	Batch	[Cp
Analyte	mg/l		mg/l		date / time		
2-Nitrophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	² Tc
4-Nitrophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
Pentachlorophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	3
Phenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	Ss
2,4,6-Trichlorophenol	ND		0.0100	1	08/25/2021 21:57	WG1728562	
(S) 2-Fluorophenol	22.4		10.0-120		08/25/2021 21:57	WG1728562	⁴ Cn
(S) Phenol-d5	15.9		10.0-120		08/25/2021 21:57	WG1728562	OII
(S) Nitrobenzene-d5	41.8		10.0-127		08/25/2021 21:57	WG1728562	5
(S) 2-Fluorobiphenyl	45.2		10.0-130		08/25/2021 21:57	WG1728562	⁵Sr
(S) 2,4,6-Tribromophenol	39.5		10.0-155		08/25/2021 21:57	WG1728562	
(S) p-Terphenyl-d14	41.5		10.0-128		08/25/2021 21:57	WG1728562	⁶ Qc

SDG: L1393343 DATE/TIME: 09/03/21 09:47 PAGE:

21 of 47

GI

Â

SAMPLE RESULTS - 06 L1393343

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ˈCp
Analyte	mg/l		mg/l		date / time		2
Acetone	ND		0.0500	1	08/26/2021 01:07	WG1729523	ŤC
Acrylonitrile	ND		0.0100	1	08/26/2021 01:07	WG1729523	
Benzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	³ Ss
Bromobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	00
Bromodichloromethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	4
Bromoform	ND		0.00100	1	08/26/2021 01:07	<u>WG1729523</u>	Cn
Bromomethane	ND	<u>C3</u>	0.00500	1	08/26/2021 01:07	WG1729523	
n-Butylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	⁵Sr
sec-Butylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
tert-Butylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	6
Carbon tetrachloride	ND		0.00100	1	08/26/2021 01:07	WG1729523	ଁ Q c
Chlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Chlorodibromomethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	7
Chloroethane	ND		0.00500	1	08/26/2021 01:07	WG1729523	΄GΙ
Chloroform	ND		0.00500	1	08/26/2021 01:07	WG1729523	
Chloromethane	ND		0.00250	1	08/26/2021 01:07	WG1729523	Å
2-Chlorotoluene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
4-Chlorotoluene	ND		0.00100	1	08/26/2021 01:07	WG1729523	9
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	08/26/2021 01:07	WG1729523	Sc
1,2-Dibromoethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Dibromomethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2-Dichlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,3-Dichlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,4-Dichlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Dichlorodifluoromethane	ND		0.00500	1	08/26/2021 01:07		
	ND		0.00100	1		WG1729523 WC1729523	
1,1-Dichloroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2-Dichloroethane					08/26/2021 01:07	WG1729523	
1,1-Dichloroethene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
cis-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
trans-1,2-Dichloroethene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2-Dichloropropane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,1-Dichloropropene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,3-Dichloropropane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
cis-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
trans-1,3-Dichloropropene	ND		0.00100	1	08/26/2021 01:07	<u>WG1729523</u>	
2,2-Dichloropropane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Di-isopropyl ether	ND		0.00100	1	08/26/2021 01:07	<u>WG1729523</u>	
Ethylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Hexachloro-1,3-butadiene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Isopropylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
p-lsopropyltoluene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
2-Butanone (MEK)	ND	<u>C3</u>	0.0100	1	08/26/2021 01:07	WG1729523	
Methylene Chloride	ND		0.00500	1	08/26/2021 01:07	WG1729523	
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	08/26/2021 01:07	WG1729523	
Methyl tert-butyl ether	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Naphthalene	ND		0.00500	1	08/26/2021 01:07	WG1729523	
n-Propylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Styrene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,1,1,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,1,2,2-Tetrachloroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Tetrachloroethene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Toluene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2,3-Trichlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2,4-Trichlorobenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,1,1-Trichloroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	
ACCOUN	T:		PRO	JECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree				DQIWA	L13933		22 of 47

TMW-3 DUP Collected date/time: 08/18/21 13:35

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l		date / time		
1,1,2-Trichloroethane	ND		0.00100	1	08/26/2021 01:07	WG1729523	² Tc
Trichloroethene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Trichlorofluoromethane	ND		0.00500	1	08/26/2021 01:07	WG1729523	3
1,2,3-Trichloropropane	ND		0.00250	1	08/26/2021 01:07	WG1729523	ຶ Ss
1,2,4-Trimethylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
1,2,3-Trimethylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	⁴ Cr
1,3,5-Trimethylbenzene	ND		0.00100	1	08/26/2021 01:07	WG1729523	
Vinyl chloride	ND		0.00100	1	08/26/2021 01:07	WG1729523	5
Xylenes, Total	ND		0.00300	1	08/26/2021 01:07	WG1729523	⁵Sr
(S) Toluene-d8	106		80.0-120		08/26/2021 01:07	WG1729523	
(S) 4-Bromofluorobenzene	97.2		77.0-126		08/26/2021 01:07	WG1729523	⁶ Q
(S) 1,2-Dichloroethane-d4	104		70.0-130		08/26/2021 01:07	WG1729523	

SDG: L1393343 C 09 GI

Â

Mercury by Method 7470A

QUALITY CONTROL SUMMARY L1393343-01,02,03,04,05

Method Blank (MB)

Method Blar	IK (IVIB)				1 CD
(MB) R3696250-	1 08/25/2112:05				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Mercury	U		0.000100	0.000200	
					³ Ss

Laboratory Control Sample (LCS)

(LCS) R3696250-2 08	8/25/21 12:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.00300	0.00265	88.3	80.0-120	

L1393343-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393343-01 08/25/2	21 12:09 • (MS) F	₹3696250-3 0	8/25/21 12:16 •	(MSD) R36962	250-4 08/25/21	1 12:18						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ma/l	ma/l	mg/l	ma/l	0/_	0/_		0/			0/	0/
Theryte	iiig/i	mg/i	iliy/i	iliy/i	/0	70		/0			/0	70

DATE/TIME: 09/03/21 09:47 Cn

Sr

[°]Qc

GI

Â

Metals (ICP) by Method 6010D

QUALITY CONTROL SUMMARY L1393343-01,02,03,04,05

Method Blank (MB)

(MB) R3697295-1 08/26/2118:34

(1010) K3097295=1 00/20/2	110.54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00440	0.0100
Barium	U		0.000736	0.00500
Cadmium	U		0.000479	0.00200
Chromium	U		0.00140	0.0100
Lead	U		0.00299	0.00600
Selenium	U		0.00735	0.0100
Silver	U		0.00154	0.00500

Laboratory Control Sample (LCS)

(LCS) R3697295-2 (08/26/21 18:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Arsenic	1.00	0.904	90.4	80.0-120	
Barium	1.00	0.973	97.3	80.0-120	
Cadmium	1.00	0.923	92.3	80.0-120	
Chromium	1.00	0.942	94.2	80.0-120	
Lead	1.00	0.931	93.1	80.0-120	
Selenium	1.00	0.926	92.6	80.0-120	
Silver	0.200	0.171	85.7	80.0-120	

L1393421-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393421-02 08/26/2	21 18:39 • (MS) F	23697295-4 0	8/26/21 18:45 •	• (MSD) R36972	295-5 08/26/2	21 18:48						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	1.00	ND	0.940	0.947	94.0	94.7	1	75.0-125			0.807	20
Barium	1.00	0.0934	1.05	1.06	96.0	96.8	1	75.0-125			0.815	20
Cadmium	1.00	0.00339	0.943	0.951	94.0	94.8	1	75.0-125			0.868	20
Chromium	1.00	ND	0.945	0.949	94.5	94.9	1	75.0-125			0.408	20
Lead	1.00	ND	0.949	0.957	94.9	95.7	1	75.0-125			0.758	20
Selenium	1.00	ND	0.971	0.980	97.1	98.0	1	75.0-125			0.916	20
Silver	0.200	ND	0.175	0.177	87.7	88.4	1	75.0-125			0.742	20

ACCOUNT:
Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47

PAGE: 25 of 47

Sr [°]Qc GI Â Sc

Тс

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY L1393343-01,02,03,04,05

Method Blank (MB)

Method Blank (MB	3)			
(MB) R3698451-2 08/25/	J/21 10:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Gasoline Range Organics-NWTPH	0.0533	Ţ	0.0316	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.5			78.0-120

Laboratory Control Sample (LCS)

(LCS) R3698451-1 08/25/	21 09:08							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
Gasoline Range Organics-NWTPH	5.50	5.18	94.2	70.0-124				
(S) a,a,a-Trifluorotoluene(FID)			88.3	78.0-120				

Sr

[°]Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (MB)				
(MB) R3697816-4 08/25/2	1 21:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0113	0.0500
Acrylonitrile	U		0.000671	0.0100
Benzene	U		0.0000941	0.00100
Bromobenzene	U		0.000118	0.00100
Bromodichloromethane	U		0.000136	0.00100
Bromoform	U		0.000129	0.00100
Bromomethane	U		0.000605	0.00500
n-Butylbenzene	U		0.000157	0.00100
sec-Butylbenzene	U		0.000125	0.00100
tert-Butylbenzene	U		0.000127	0.00100
Carbon tetrachloride	U		0.000128	0.00100
Chlorobenzene	U		0.000116	0.00100
Chlorodibromomethane	U		0.000140	0.00100
Chloroethane	U		0.000192	0.00500
Chloroform	U		0.000111	0.00500
Chloromethane	U		0.000960	0.00250
2-Chlorotoluene	U		0.000106	0.00100
4-Chlorotoluene	U		0.000114	0.00100
1,2-Dibromo-3-Chloropropane	U		0.000276	0.00500
1,2-Dibromoethane	U		0.000126	0.00100
Dibromomethane	U		0.000122	0.00100
1,2-Dichlorobenzene	U		0.000107	0.00100
1,3-Dichlorobenzene	U		0.000110	0.00100
1,4-Dichlorobenzene	U		0.000120	0.00100
Dichlorodifluoromethane	U		0.000374	0.00500
1,1-Dichloroethane	U		0.000100	0.00100
1,2-Dichloroethane	U		0.0000819	0.00100
1,1-Dichloroethene	U		0.000188	0.00100
cis-1,2-Dichloroethene	U		0.000126	0.00100
trans-1,2-Dichloroethene	U		0.000149	0.00100
1,2-Dichloropropane	U		0.000149	0.00100
1,1-Dichloropropene	U		0.000142	0.00100
1,3-Dichloropropane	U		0.000112	0.00100
cis-1,3-Dichloropropene	U		0.000110	0.00100
trans-1,3-Dichloropropene	U		0.000118	0.00100
	5		0.000118	0.00100

Cp
 ²Tc
 ³Ss
 ⁴Cn
 ⁵Sr
 ⁶Qc
 ⁷Gl
 ⁸Al
 ⁹Sc

ACCOUNT: Cardno - Peachtree Corners, GA

U

U

U

U

U

2,2-Dichloropropane

Hexachloro-1,3-butadiene

Di-isopropyl ether

Isopropylbenzene

Ethylbenzene

PROJECT: CHILOQIWA

0.00100

0.00100

0.00100

0.00100

0.00100

0.000161

0.000105

0.000137

0.000337

0.000105

SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 27 of 47

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3697816-4 08/25/2	21 21:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
p-lsopropyltoluene	U		0.000120	0.00100
2-Butanone (MEK)	U		0.00119	0.0100
Methylene Chloride	U		0.000430	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.000478	0.0100
Methyl tert-butyl ether	U		0.000101	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.0000993	0.00100
Styrene	U		0.000118	0.00100
1,1,1,2-Tetrachloroethane	U		0.000147	0.00100
1,1,2,2-Tetrachloroethane	U		0.000133	0.00100
Tetrachloroethene	U		0.000300	0.00100
Toluene	U		0.000278	0.00100
1,1,2-Trichlorotrifluoroethane	U		0.000180	0.00100
1,2,3-Trichlorobenzene	U		0.000230	0.00100
1,2,4-Trichlorobenzene	U		0.000481	0.00100
1,1,1-Trichloroethane	U		0.000149	0.00100
1,1,2-Trichloroethane	U		0.000158	0.00100
Trichloroethene	U		0.000190	0.00100
Trichlorofluoromethane	U		0.000160	0.00500
1,2,3-Trichloropropane	U		0.000237	0.00250
1,2,3-Trimethylbenzene	U		0.000104	0.00100
1,2,4-Trimethylbenzene	U		0.000322	0.00100
1,3,5-Trimethylbenzene	U		0.000104	0.00100
Vinyl chloride	U		0.000234	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	104			80.0-120
(S) 4-Bromofluorobenzene	89.8			77.0-126
(S) 1,2-Dichloroethane-d4	118			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
alyte	mg/l	mg/l	mg/l	%	%	%			%	%
j	0.0250	0.0282	0.0300	113	120	19.0-160			6.19	27
nitrile	0.0250	0.0298	0.0305	119	122	55.0-149			2.32	20
zene	0.00500	0.00512	0.00517	102	103	70.0-123			0.972	20
obenzene	0.00500	0.00587	0.00567	117	113	73.0-121			3.47	20
odichloromethane	0.00500	0.00533	0.00534	107	107	75.0-120			0.187	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQIWA	L1393343	09/03/21 09:47	28 of 47

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3697816-1 08/25/2	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCC Qualifier	LCCD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	RPD %	%
Bromoform	0.00500	0.00389	0.00374	77.8	74.8	68.0-132			3.93	20
Bromomethane	0.00500	0.00389	0.00374	44.8	52.0	10.0-160			14.9	25
n-Butylbenzene	0.00500	0.00224	0.00200	88.4	87.4	73.0-125			14.9	20
sec-Butylbenzene	0.00500	0.00442	0.00437	98.6	94.8	75.0-125			3.93	20
tert-Butylbenzene	0.00500	0.00493	0.00474	102	94.0 98.8	76.0-125			3.19	20
Carbon tetrachloride	0.00500	0.00310	0.00494	96.8	102	68.0-124			5.23	20
Chlorobenzene	0.00500	0.00484	0.00510	88.2	87.2	80.0-120			5.23 1.14	20
					87.2	77.0-125			0.913	20
Chlorodibromomethane	0.00500	0.00440	0.00436	88.0 111	87.2	47.0-125			3.12	20
Chloroethane	0.00500	0.00554	0.00537							
Chloroform	0.00500	0.00528	0.00539	106	108	73.0-120			2.06	20
Chloromethane	0.00500	0.00586	0.00590	117	118	41.0-142			0.680	20
2-Chlorotoluene	0.00500	0.00527	0.00517	105	103	76.0-123			1.92	20
4-Chlorotoluene	0.00500	0.00541	0.00547	108	109	75.0-122			1.10	20
1,2-Dibromo-3-Chloropropane	0.00500	0.00398	0.00391	79.6	78.2	58.0-134			1.77	20
1,2-Dibromoethane	0.00500	0.00437	0.00430	87.4	86.0	80.0-122			1.61	20
Dibromomethane	0.00500	0.00509	0.00492	102	98.4	80.0-120			3.40	20
I,2-Dichlorobenzene	0.00500	0.00476	0.00482	95.2	96.4	79.0-121			1.25	20
I,3-Dichlorobenzene	0.00500	0.00496	0.00490	99.2	98.0	79.0-120			1.22	20
I,4-Dichlorobenzene	0.00500	0.00460	0.00454	92.0	90.8	79.0-120			1.31	20
Dichlorodifluoromethane	0.00500	0.00488	0.00481	97.6	96.2	51.0-149			1.44	20
1,1-Dichloroethane	0.00500	0.00557	0.00570	111	114	70.0-126			2.31	20
1,2-Dichloroethane	0.00500	0.00518	0.00519	104	104	70.0-128			0.193	20
I,1-Dichloroethene	0.00500	0.00454	0.00454	90.8	90.8	71.0-124			0.000	20
cis-1,2-Dichloroethene	0.00500	0.00484	0.00490	96.8	98.0	73.0-120			1.23	20
trans-1,2-Dichloroethene	0.00500	0.00468	0.00471	93.6	94.2	73.0-120			0.639	20
l,2-Dichloropropane	0.00500	0.00563	0.00586	113	117	77.0-125			4.00	20
1,1-Dichloropropene	0.00500	0.00518	0.00523	104	105	74.0-126			0.961	20
1,3-Dichloropropane	0.00500	0.00499	0.00491	99.8	98.2	80.0-120			1.62	20
cis-1,3-Dichloropropene	0.00500	0.00515	0.00523	103	105	80.0-123			1.54	20
trans-1,3-Dichloropropene	0.00500	0.00463	0.00459	92.6	91.8	78.0-124			0.868	20
2,2-Dichloropropane	0.00500	0.00530	0.00546	106	109	58.0-130			2.97	20
Di-isopropyl ether	0.00500	0.00651	0.00644	130	129	58.0-138			1.08	20
Ethylbenzene	0.00500	0.00436	0.00431	87.2	86.2	79.0-123			1.15	20
Hexachloro-1,3-butadiene	0.00500	0.00367	0.00374	73.4	74.8	54.0-138			1.89	20
Isopropylbenzene	0.00500	0.00417	0.00421	83.4	84.2	76.0-127			0.955	20
p-Isopropyltoluene	0.00500	0.00454	0.00447	90.8	89.4	76.0-125			1.55	20
2-Butanone (MEK)	0.0250	0.0316	0.0328	126	131	44.0-160			3.73	20
		0.00470								

¹ Cp
 ² Tc
 ³ Ss
 ⁴ Cn
 ⁵ Sr
 ⁶ Qc
 ⁷ GI
 ⁸ AI
 ⁹ Sc

ACCOUNT: Cardno - Peachtree Corners, GA

0.00500

0.0250

0.00500

0.00476

0.0308

0.00500

0.00462

0.0309

0.00512

Methylene Chloride

Methyl tert-butyl ether

4-Methyl-2-pentanone (MIBK)

PROJECT: CHILOQIWA

92.4

124

102

67.0-120

68.0-142

68.0-125

95.2

123

100

SDG: L1393343 2.99

0.324

2.37

20

20

20

DATE/TIME:

09/03/21 09:47

PAGE: 29 of 47

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3697816-1 08/25/2	21 20:22 • (LCSI	D) R3697816-2	2 08/25/2120:	44						
· · ·	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Naphthalene	0.00500	0.00318	0.00312	63.6	62.4	54.0-135			1.90	20
n-Propylbenzene	0.00500	0.00525	0.00513	105	103	77.0-124			2.31	20
Styrene	0.00500	0.00419	0.00412	83.8	82.4	73.0-130			1.68	20
1,1,1,2-Tetrachloroethane	0.00500	0.00444	0.00440	88.8	88.0	75.0-125			0.905	20
1,1,2,2-Tetrachloroethane	0.00500	0.00598	0.00569	120	114	65.0-130			4.97	20
Tetrachloroethene	0.00500	0.00425	0.00409	85.0	81.8	72.0-132			3.84	20
Toluene	0.00500	0.00465	0.00459	93.0	91.8	79.0-120			1.30	20
1,1,2-Trichlorotrifluoroethane	0.00500	0.00428	0.00427	85.6	85.4	69.0-132			0.234	20
1,2,3-Trichlorobenzene	0.00500	0.00374	0.00362	74.8	72.4	50.0-138			3.26	20
1,2,4-Trichlorobenzene	0.00500	0.00358	0.00360	71.6	72.0	57.0-137			0.557	20
1,1,1-Trichloroethane	0.00500	0.00512	0.00512	102	102	73.0-124			0.000	20
1,1,2-Trichloroethane	0.00500	0.00440	0.00434	88.0	86.8	80.0-120			1.37	20
Trichloroethene	0.00500	0.00463	0.00450	92.6	90.0	78.0-124			2.85	20
Trichlorofluoromethane	0.00500	0.00446	0.00457	89.2	91.4	59.0-147			2.44	20
1,2,3-Trichloropropane	0.00500	0.00545	0.00571	109	114	73.0-130			4.66	20
1,2,3-Trimethylbenzene	0.00500	0.00521	0.00511	104	102	77.0-120			1.94	20
1,2,4-Trimethylbenzene	0.00500	0.00530	0.00515	106	103	76.0-121			2.87	20
1,3,5-Trimethylbenzene	0.00500	0.00520	0.00521	104	104	76.0-122			0.192	20
Vinyl chloride	0.00500	0.00534	0.00521	107	104	67.0-131			2.46	20
Xylenes, Total	0.0150	0.0131	0.0131	87.3	87.3	79.0-123			0.000	20
(S) Toluene-d8				100	98.6	80.0-120				
(S) 4-Bromofluorobenzene				93.2	94.4	77.0-126				
(S) 1,2-Dichloroethane-d4				117	118	70.0-130				

L1393238-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393238-14 08/26/21 02:53 • (MS) R3697816-5 08/26/21 05:03 • (MSD) R3697816-6 08/26/21 05:25												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.0250	ND	ND	ND	128	108	1	10.0-160			16.3	35
Acrylonitrile	0.0250	ND	0.0352	0.0282	141	113	1	21.0-160			22.1	32
Benzene	0.00500	ND	0.00394	0.00205	78.8	41.0	1	17.0-158		<u>J3</u>	63.1	27
Bromobenzene	0.00500	ND	0.00525	0.00313	105	62.6	1	30.0-149		<u>J3</u>	50.6	28
Bromodichloromethane	0.00500	ND	0.00474	0.00298	94.8	59.6	1	31.0-150		<u>J3</u>	45.6	27
Bromoform	0.00500	ND	0.00404	0.00290	80.8	58.0	1	29.0-150		<u>J3</u>	32.9	29
Bromomethane	0.00500	ND	ND	ND	37.6	17.4	1	10.0-160		<u>J3</u>	73.5	38
n-Butylbenzene	0.00500	ND	0.00369	0.00186	73.8	37.2	1	31.0-150		<u>J3</u>	65.9	30
sec-Butylbenzene	0.00500	ND	0.00388	0.00171	77.6	34.2	1	33.0-155		<u>J3</u>	77.6	29
tert-Butylbenzene	0.00500	ND	0.00397	0.00197	79.4	39.4	1	34.0-153		<u>J3</u>	67.3	28

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQIWA	L1393343	09/03/21 09:47	30 of 47

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

L1393238-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393238-14 08/26/2	21 02:53 • (MS)	R3697816-5 0	8/26/21 05:03	• (MSD) R3697	7816-6 08/26/2	21 05:25							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Carbon tetrachloride	0.00500	ND	0.00360	0.00165	72.0	33.0	1	23.0-159		<u>J3</u>	74.3	28	
Chlorobenzene	0.00500	ND	0.00362	0.00209	72.4	41.8	1	33.0-152		<u>J3</u>	53.6	27	
Chlorodibromomethane	0.00500	ND	0.00435	0.00281	87.0	56.2	1	37.0-149		<u>J3</u>	43.0	27	
Chloroethane	0.00500	ND	ND	ND	87.4	0.000	1	10.0-160		<u>J3 J6</u>	200	30	
Chloroform	0.00500	ND	ND	ND	86.4	46.4	1	29.0-154		<u>J3</u>	60.2	28	
Chloromethane	0.00500	ND	0.00433	ND	86.6	31.8	1	10.0-160		<u>J3</u>	92.6	29	
2-Chlorotoluene	0.00500	ND	0.00424	0.00245	84.8	49.0	1	32.0-153		<u>J3</u>	53.5	28	
4-Chlorotoluene	0.00500	ND	0.00449	0.00255	89.8	51.0	1	32.0-150		<u>J3</u>	55.1	28	
1,2-Dibromo-3-Chloropropane	0.00500	ND	ND	ND	95.4	75.4	1	22.0-151			23.4	34	
1,2-Dibromoethane	0.00500	ND	0.00431	0.00299	86.2	59.8	1	34.0-147		<u>J3</u>	36.2	27	
Dibromomethane	0.00500	ND	0.00487	0.00305	97.4	61.0	1	30.0-151		<u>J3</u>	46.0	27	
1,2-Dichlorobenzene	0.00500	ND	0.00455	0.00275	91.0	55.0	1	34.0-149		<u>J3</u>	49.3	28	
1,3-Dichlorobenzene	0.00500	ND	0.00434	0.00256	86.8	51.2	1	36.0-146		<u>J3</u>	51.6	27	
1,4-Dichlorobenzene	0.00500	ND	0.00420	0.00248	84.0	49.6	1	35.0-142		<u>J3</u>	51.5	27	
Dichlorodifluoromethane	0.00500	ND	ND	ND	71.6	18.9	1	10.0-160		<u>J3</u>	117	29	
1,1-Dichloroethane	0.00500	ND	0.00439	0.00217	87.8	43.4	1	25.0-158		<u>J3</u>	67.7	27	
1,2-Dichloroethane	0.00500	ND	0.00491	0.00308	98.2	61.6	1	29.0-151		<u>J3</u>	45.8	27	
1,1-Dichloroethene	0.00500	ND	0.00309	0.00125	61.8	25.0	1	11.0-160		<u>J3</u>	84.8	29	
cis-1,2-Dichloroethene	0.00500	ND	0.00458	0.00278	77.5	41.5	1	10.0-160		<u>J3</u>	48.9	27	
trans-1,2-Dichloroethene	0.00500	ND	0.00332	0.00160	66.4	32.0	1	17.0-153		<u>J3</u>	69.9	27	
1,2-Dichloropropane	0.00500	ND	0.00489	0.00275	97.8	55.0	1	30.0-156		<u>J3</u>	56.0	27	
1,1-Dichloropropene	0.00500	ND	0.00346	0.00165	69.2	33.0	1	25.0-158		<u>J3</u>	70.8	27	
1,3-Dichloropropane	0.00500	ND	0.00495	0.00317	99.0	63.4	1	38.0-147		<u>J3</u>	43.8	27	
cis-1,3-Dichloropropene	0.00500	ND	0.00404	0.00251	80.8	50.2	1	34.0-149		<u>J3</u>	46.7	28	
trans-1,3-Dichloropropene	0.00500	ND	0.00433	0.00276	86.6	55.2	1	32.0-149		<u>J3</u>	44.3	28	
2,2-Dichloropropane	0.00500	ND	0.00336	0.00163	67.2	32.6	1	24.0-152		<u>J3</u>	69.3	29	
Di-isopropyl ether	0.00500	ND	0.00612	0.00357	122	71.4	1	21.0-160		<u>J3</u>	52.6	28	
Ethylbenzene	0.00500	ND	0.00329	0.00172	65.8	34.4	1	30.0-155		<u>J3</u>	62.7	27	
Hexachloro-1,3-butadiene	0.00500	ND	0.00321	0.00138	64.2	27.6	1	20.0-154		<u>J3</u>	79.7	34	
Isopropylbenzene	0.00500	ND	0.00307	0.00153	61.4	30.6	1	28.0-157		<u>J3</u>	67.0	27	
p-Isopropyltoluene	0.00500	ND	0.00360	0.00163	72.0	32.6	1	30.0-154		<u>J3</u>	75.3	29	
2-Butanone (MEK)	0.0250	ND	0.0377	0.0317	151	127	1	10.0-160			17.3	32	
Methylene Chloride	0.00500	ND	ND	ND	79.2	42.8	1	23.0-144		<u>J3</u>	59.7	28	
4-Methyl-2-pentanone (MIBK)	0.0250	ND	0.0361	0.0280	144	112	1	29.0-160			25.3	29	
Methyl tert-butyl ether	0.00500	ND	0.00514	0.00336	103	67.2	1	28.0-150		<u>J3</u>	41.9	29	
Naphthalene	0.00500	ND	ND	ND	71.8	48.4	1	12.0-156		<u>J3</u>	38.9	35	
n-Propylbenzene	0.00500	ND	0.00406	0.00206	81.2	41.2	1	31.0-154		<u>J3</u>	65.4	28	
Styrene	0.00500	ND	0.00335	0.00183	67.0	36.6	1	33.0-155		<u>J3</u>	58.7	28	
1,1,1,2-Tetrachloroethane	0.00500	ND	0.00394	0.00236	78.8	47.2	1	36.0-151		<u>J3</u>	50.2	29	
1,1,2,2-Tetrachloroethane	0.00500	ND	0.00704	0.00511	141	102	1	33.0-150		<u>J3</u>	31.8	28	
٨٥	CCOUNT:			PPO	JECT:			SDG:		DATE/	TIME		PAGE:
Av Cardea Day		~						303.		00/03/2			PAGE.

Cardno - Peachtree Corners, GA

CHILOQIWA

09/03/21 09:47

31 of 47

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

L1393343

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

L1393238-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1393238-14 08/26/2	21 02:53 • (MS)	R3697816-5 0	8/26/21 05:03	• (MSD) R3697	7816-6 08/26/2	21 05:25						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.00500	ND	0.00299	0.00153	59.8	30.6	1	10.0-160		<u>J3</u>	64.6	27
Toluene	0.00500	ND	0.00348	0.00190	69.6	38.0	1	26.0-154		<u>J3</u>	58.7	28
1,1,2-Trichlorotrifluoroethane	0.00500	ND	0.00324	0.00145	64.8	29.0	1	23.0-160		<u>J3</u>	76.3	30
1,2,3-Trichlorobenzene	0.00500	ND	0.00392	0.00229	78.4	45.8	1	17.0-150		<u>J3</u>	52.5	36
1,2,4-Trichlorobenzene	0.00500	ND	0.00366	0.00175	73.2	35.0	1	24.0-150		<u>J3</u>	70.6	33
1,1,1-Trichloroethane	0.00500	ND	0.00373	0.00182	74.6	36.4	1	23.0-160		<u>J3</u>	68.8	28
1,1,2-Trichloroethane	0.00500	ND	0.00455	0.00303	91.0	60.6	1	35.0-147		<u>J3</u>	40.1	27
Trichloroethene	0.00500	ND	0.00325	0.00162	65.0	32.4	1	10.0-160		<u>J3</u>	66.9	25
Trichlorofluoromethane	0.00500	ND	ND	ND	63.4	23.6	1	17.0-160		<u>J3</u>	91.5	31
1,2,3-Trichloropropane	0.00500	ND	0.00652	0.00470	130	94.0	1	34.0-151		<u>J3</u>	32.4	29
1,2,3-Trimethylbenzene	0.00500	ND	0.00455	0.00255	91.0	51.0	1	32.0-149		<u>J3</u>	56.3	28
1,2,4-Trimethylbenzene	0.00500	ND	0.00435	0.00227	87.0	45.4	1	26.0-154		<u>J3</u>	62.8	27
1,3,5-Trimethylbenzene	0.00500	ND	0.00414	0.00211	82.8	42.2	1	28.0-153		<u>J3</u>	65.0	27
Vinyl chloride	0.00500	ND	0.00346	0.00121	69.2	24.2	1	10.0-160		<u>J3</u>	96.4	27
Xylenes, Total	0.0150	ND	0.0101	0.00544	67.3	36.3	1	29.0-154		<u>J3</u>	60.0	28
(S) Toluene-d8					99.2	98.7		80.0-120				
(S) 4-Bromofluorobenzene					93.0	90.9		77.0-126				
(S) 1,2-Dichloroethane-d4					115	113		70.0-130				

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 32 of 47 Тс

Ss

Cn

Sr

*Q*c

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1393343-02,03,04,05,06

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00500

0.00250

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.000605

0.000157

0.000125

0.000127

0.000128

0.000116

0.000140

0.000192

0.000111

0.000960

0.000106

0.000114

0.000276

0.000126

0.000122

0.000107

0.000110

0.000120

0.000374

0.000100

0.0000819

0.000188

0.000126

0.000149

0.000149

0.000142

0.000110

0.000111

0.000118

0.000161

0.000105

0.000137

0.000337

0.000105

Method Blank (MB)

Bromomethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Chlorobenzene

Chloroethane Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

1,2-Dibromoethane

Dibromomethane 1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,1-Dichloropropene 1,3-Dichloropropane

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

2,2-Dichloropropane Di-isopropyl ether

Ethylbenzene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

1,2-Dibromo-3-Chloropropane

Carbon tetrachloride

Chlorodibromomethane

	•			
(MB) R3697367-2 08/25	5/21 21:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0113	0.0500
Acrylonitrile	U		0.000671	0.0100
Benzene	U		0.0000941	0.00100
Bromobenzene	U		0.000118	0.00100
Bromodichloromethane	U		0.000136	0.00100
Bromoform	U		0.000129	0.00100

U

U

U U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

1	Ср
2	Тс
3	Ss
4	Cn
5	Sr
6	Qc
7	GI
8	AI

Sc

Hexachloro-1,3-butadiene	U	
Isopropylbenzene	U	
	ACCOUNT	•
Cardno -	Peachtree C	Corners, GA

PROJECT:
CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47

PAGE: 33 of 47

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
p-lsopropyltoluene	U		0.000120	0.00100	
2-Butanone (MEK)	U		0.00119	0.0100	
Methylene Chloride	U		0.000430	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.000478	0.0100	
Methyl tert-butyl ether	U		0.000101	0.00100	
Naphthalene	U		0.00100	0.00500	
n-Propylbenzene	U		0.0000993	0.00100	
Styrene	U		0.000118	0.00100	
1,1,1,2-Tetrachloroethane	U		0.000147	0.00100	
1,1,2,2-Tetrachloroethane	U		0.000133	0.00100	
Tetrachloroethene	U		0.000300	0.00100	
Toluene	U		0.000278	0.00100	
1,1,2-Trichlorotrifluoroethane	U		0.000180	0.00100	
1,2,3-Trichlorobenzene	U		0.000230	0.00100	
1,2,4-Trichlorobenzene	U		0.000481	0.00100	
1,1,1-Trichloroethane	U		0.000149	0.00100	
1,1,2-Trichloroethane	U		0.000158	0.00100	
Trichloroethene	U		0.000190	0.00100	
Trichlorofluoromethane	U		0.000160	0.00500	
1,2,3-Trichloropropane	U		0.000237	0.00250	
1,2,3-Trimethylbenzene	U		0.000104	0.00100	
1,2,4-Trimethylbenzene	U		0.000322	0.00100	
1,3,5-Trimethylbenzene	U		0.000104	0.00100	
Vinyl chloride	U		0.000234	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	103			80.0-120	
(S) 4-Bromofluorobenzene	91.9			77.0-126	
(S) 1,2-Dichloroethane-d4	105			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3697367-1 08/25	5/21 19:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Acetone	0.0250	0.0230	92.0	19.0-160	
Acrylonitrile	0.0250	0.0191	76.4	55.0-149	
Benzene	0.00500	0.00489	97.8	70.0-123	
Bromobenzene	0.00500	0.00478	95.6	73.0-121	
Bromodichloromethane	0.00500	0.00448	89.6	75.0-120	

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 34 of 47 Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS)

(LCS) R3697367-1 08/25/21 19:43

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Bromoform	0.00500	0.00411	82.2	68.0-132	
Bromomethane	0.00500	0.00313	62.6	10.0-160	
n-Butylbenzene	0.00500	0.00496	99.2	73.0-125	
ec-Butylbenzene	0.00500	0.00469	93.8	75.0-125	
ert-Butylbenzene	0.00500	0.00430	86.0	76.0-124	
Carbon tetrachloride	0.00500	0.00494	98.8	68.0-126	
Chlorobenzene	0.00500	0.00458	91.6	80.0-121	
Chlorodibromomethane	0.00500	0.00443	88.6	77.0-125	
Chloroethane	0.00500	0.00620	124	47.0-150	
hloroform	0.00500	0.00500	100	73.0-120	
Chloromethane	0.00500	0.00410	82.0	41.0-142	
-Chlorotoluene	0.00500	0.00466	93.2	76.0-123	
-Chlorotoluene	0.00500	0.00440	88.0	75.0-122	
2-Dibromo-3-Chloropropane	0.00500	0.00466	93.2	58.0-134	
2-Dibromoethane	0.00500	0.00470	94.0	80.0-122	
ibromomethane	0.00500	0.00475	95.0	80.0-120	
2-Dichlorobenzene	0.00500	0.00504	101	79.0-121	
3-Dichlorobenzene	0.00500	0.00455	91.0	79.0-120	
4-Dichlorobenzene	0.00500	0.00471	94.2	79.0-120	
ichlorodifluoromethane	0.00500	0.00497	99.4	51.0-149	
1-Dichloroethane	0.00500	0.00518	104	70.0-126	
2-Dichloroethane	0.00500	0.00502	100	70.0-128	
1-Dichloroethene	0.00500	0.00453	90.6	71.0-124	
is-1,2-Dichloroethene	0.00500	0.00487	97.4	73.0-120	
ans-1,2-Dichloroethene	0.00500	0.00477	95.4	73.0-120	
2-Dichloropropane	0.00500	0.00481	96.2	77.0-125	
1-Dichloropropene	0.00500	0.00491	98.2	74.0-126	
3-Dichloropropane	0.00500	0.00479	95.8	80.0-120	
s-1,3-Dichloropropene	0.00500	0.00509	102	80.0-123	
ans-1,3-Dichloropropene	0.00500	0.00409	81.8	78.0-124	
,2-Dichloropropane	0.00500	0.00428	85.6	58.0-130	
i-isopropyl ether	0.00500	0.00461	92.2	58.0-138	
thylbenzene	0.00500	0.00439	87.8	79.0-123	
exachloro-1,3-butadiene	0.00500	0.00463	92.6	54.0-138	
opropylbenzene	0.00500	0.00436	87.2	76.0-127	
-Isopropyltoluene	0.00500	0.00447	89.4	76.0-125	
-Butanone (MEK)	0.0250	0.0186	74.4	44.0-160	
Aethylene Chloride	0.00500	0.00563	113	67.0-120	
1-Methyl-2-pentanone (MIBK)	0.0250	0.0215	86.0	68.0-142	
Methyl tert-butyl ether	0.00500	0.00501	100	68.0-125	

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 35 of 47 Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS)

(LCS) R3697367-1 08/25/2119:43

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Naphthalene	0.00500	0.00597	119	54.0-135	
n-Propylbenzene	0.00500	0.00476	95.2	77.0-124	
Styrene	0.00500	0.00420	84.0	73.0-130	
1,1,1,2-Tetrachloroethane	0.00500	0.00427	85.4	75.0-125	
1,1,2,2-Tetrachloroethane	0.00500	0.00460	92.0	65.0-130	
Tetrachloroethene	0.00500	0.00431	86.2	72.0-132	
Toluene	0.00500	0.00437	87.4	79.0-120	
1,1,2-Trichlorotrifluoroethane	0.00500	0.00509	102	69.0-132	
1,2,3-Trichlorobenzene	0.00500	0.00546	109	50.0-138	
1,2,4-Trichlorobenzene	0.00500	0.00539	108	57.0-137	
1,1,1-Trichloroethane	0.00500	0.00468	93.6	73.0-124	
1,1,2-Trichloroethane	0.00500	0.00411	82.2	80.0-120	
Trichloroethene	0.00500	0.00504	101	78.0-124	
Trichlorofluoromethane	0.00500	0.00584	117	59.0-147	
1,2,3-Trichloropropane	0.00500	0.00445	89.0	73.0-130	
1,2,3-Trimethylbenzene	0.00500	0.00480	96.0	77.0-120	
1,2,4-Trimethylbenzene	0.00500	0.00444	88.8	76.0-121	
1,3,5-Trimethylbenzene	0.00500	0.00460	92.0	76.0-122	
Vinyl chloride	0.00500	0.00498	99.6	67.0-131	
Xylenes, Total	0.0150	0.0132	88.0	79.0-123	
(S) Toluene-d8			99.2	80.0-120	
(S) 4-Bromofluorobenzene			88.3	77.0-126	
(S) 1,2-Dichloroethane-d4			105	70.0-130	

Sc

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 36 of 47

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Method Blank (MB) (MB) R3698602-1 08/31/21 09:47 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l mg/l U Diesel Range Organics (DRO) 0.0667 0.200 0.0833 Residual Range Organics (RRO) U 0.250 Ss (S) o-Terphenyl 62.0 52.0-156 Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3698602-2 08/31/	21 10:13 • (LCSE	D) R3698602-	3 08/31/21 10:3	9						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Diesel Range Organics (DRO)	1.50	1.64	1.63	109	109	50.0-150			0.612	20
(S) o-Terphenyl				90.0	89.0	52.0-156				

Sr

Qc

GI

ΆI

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Method Blank (MB) (MB) R3698576-1 08/31/21 09:18 MB Result <u>MB Qualifier</u> MB MDL MB RDL

Analyte	mg/l	mg/l	mg/l
Diesel Range Organics (DRO)	U	0.0667	0.200
Residual Range Organics (RRO)	U	0.0833	0.250
(S) o-Terphenyl	103		52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3698576-2 08/31/	21 09:44 • (LCS	D) R3698576	-3 08/31/21 10:1	0						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Diesel Range Organics (DRO)	1.50	0.969	1.32	64.6	88.0	50.0-150		<u>J3</u>	30.7	20
(S) o-Terphenyl				82.5	106	52.0-156				

Cp
 ²Tc
 ³Ss
 ⁴Cn
 ⁵Sr
 ⁶Qc
 ⁷Gl
 ⁸Al
 ⁹Sc

SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 38 of 47

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Method Blank (MB) (MB) R3699011-1 09/01/21 09:40 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l mg/l Diesel Range Organics (DRO) U 0.0667 0.200 0.0833 Residual Range Organics (RRO) U 0.250 (S) o-Terphenyl 102 52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3699011-2 09/01/2	1 10:06 • (LCSD) R3699011-3	09/01/21 10:32							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Diesel Range Organics (DRO)	1.50	1.81	1.72	121	115	50.0-150			5.10	20
(S) o-Terphenyl				146	133	52.0-156				

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 39 of 47 Polychlorinated Biphenyls (GC) by Method 8082 A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3699294-1 09/01/2	1 15:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
PCB 1260	U		0.000173	0.000500
PCB 1016	U		0.000270	0.000500
PCB 1221	U		0.000270	0.000500
PCB 1232	U		0.000270	0.000500
PCB 1242	0.00115		0.000270	0.000500
PCB 1248	U		0.000173	0.000500
PCB 1254	U		0.000173	0.000500
(S) Decachlorobiphenyl	94.1			10.0-128
(S) Tetrachloro-m-xylene	104			10.0-127

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3699294-2 09/01/	/21 15:43 • (LCSI	D) R3699294-	-3 09/01/21 15:5	54							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	AI
PCB 1260	0.00250	0.00251	0.00214	100	85.6	42.0-131			15.9	25	Q
PCB 1016	0.00250	0.0140	0.00426	560	170	36.0-135	<u>J4 P</u>	<u>J3 J4</u>	107	29	Sc
(S) Decachlorobiphenyl				81.4	90.0	10.0-128					
(S) Tetrachloro-m-xylene				95.5	99.6	10.0-127					

PROJECT: CHILOQIWA SDG: L1393343 DATE/TIME: 09/03/21 09:47

PAGE: 40 of 47 Тс

Ss

Cn

Sr

Qc

GI

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

QUALITY CONTROL SUMMARY L1393343-01,02,03,04,05

Method Blank (MB)

(MB) R3696502-3 08/25	5/21 16:21					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Acenaphthene	U		0.0000886	0.00100		
Acenaphthylene	U		0.0000921	0.00100		
Anthracene	U		0.0000804	0.00100		
Benzidine	U		0.00374	0.0100		
Benzo(a)anthracene	U		0.000199	0.00100		
Benzo(b)fluoranthene	U		0.000130	0.00100		
Benzo(k)fluoranthene	U		0.000120	0.00100		
Benzo(g,h,i)perylene	U		0.000121	0.00100		
Benzo(a)pyrene	U		0.0000381	0.00100		
Bis(2-chlorethoxy)methane	U		0.000116	0.0100		
Bis(2-chloroethyl)ether	U		0.000137	0.0100		
2,2-Oxybis(1-Chloropropane)	U		0.000210	0.0100		
4-Bromophenyl-phenylether	U		0.0000877	0.0100		
2-Chloronaphthalene	U		0.0000648	0.00100		
4-Chlorophenyl-phenylether	U		0.0000926	0.0100		
Chrysene	U		0.000130	0.00100		
Dibenz(a,h)anthracene	U		0.0000644	0.00100		
3,3-Dichlorobenzidine	U		0.000212	0.0100		
2,4-Dinitrotoluene	U		0.0000983	0.0100		
2,6-Dinitrotoluene	U		0.000250	0.0100		
Fluoranthene	U		0.000102	0.00100		
Fluorene	U		0.0000844	0.00100		
Hexachlorobenzene	U		0.0000755	0.00100		
Hexachloro-1,3-butadiene	U		0.0000968	0.0100		
Hexachlorocyclopentadiene	U		0.0000598	0.0100		
Hexachloroethane	U		0.000127	0.0100		
Indeno(1,2,3-cd)pyrene	U		0.000279	0.00100		
Isophorone	U		0.000143	0.0100		
Naphthalene	U		0.000159	0.00100		
Nitrobenzene	U		0.000297	0.0100		
n-Nitrosodimethylamine	U		0.000998	0.0100		
n-Nitrosodiphenylamine	U		0.00237	0.0100		
n-Nitrosodi-n-propylamine	U		0.000261	0.0100		
Phenanthrene	U		0.000112	0.00100		
Benzylbutyl phthalate	U		0.000765	0.00300		
Bis(2-ethylhexyl)phthalate	U		0.000895	0.00300		
Di-n-butyl phthalate	U		0.000453	0.00300		
Diethyl phthalate	U		0.000287	0.00300		
Dimethyl phthalate	U		0.000260	0.00300		
Di-n-octyl phthalate	U		0.000932	0.00300		

Cardno - Peachtree Corners, GA

PROJECT: CHILOQIWA

SDG: L1393343

DATE/TIME: 09/03/21 09:47

PAGE: 41 of 47 Semi Volatile Organic Compounds (GC/MS) by Method 8270E

QUALITY CONTROL SUMMARY L1393343-01,02,03,04,05

Method Blank (MB)

(MB) R3696502-3 08/25	/21 16:21				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Pyrene	U		0.000107	0.00100	
1,2,4-Trichlorobenzene	U		0.0000698	0.0100	³ Ss
4-Chloro-3-methylphenol	U		0.000131	0.0100	
2-Chlorophenol	U		0.000133	0.0100	4
2,4-Dichlorophenol	U		0.000102	0.0100	Ċn
2,4-Dimethylphenol	U		0.0000636	0.0100	
4,6-Dinitro-2-methylphenol	U		0.00112	0.0100	⁵Sr
2,4-Dinitrophenol	U		0.00593	0.0100	
2-Nitrophenol	U		0.000117	0.0100	6
4-Nitrophenol	U		0.000143	0.0100	⁶ Qc
Pentachlorophenol	U		0.000313	0.0100	
Phenol	U		0.00433	0.0100	⁷ Gl
2,4,6-Trichlorophenol	U		0.000100	0.0100	
(S) Nitrobenzene-d5	58.7			10.0-127	8
(S) 2-Fluorobiphenyl	70.6			10.0-130	A
(S) p-Terphenyl-d14	65.8			10.0-128	
(S) Phenol-d5	19.3			10.0-120	Sc
(S) 2-Fluorophenol	30.1			10.0-120	
(S) 2,4,6-Tribromophenol	56.5			10.0-155	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3696502-1 08/25/	/21 15:36 • (LCS	D) R3696502-	2 08/25/2115:	58						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acenaphthene	0.0500	0.0296	0.0333	59.2	66.6	41.0-120			11.8	22
Acenaphthylene	0.0500	0.0316	0.0364	63.2	72.8	43.0-120			14.1	22
Anthracene	0.0500	0.0343	0.0357	68.6	71.4	45.0-120			4.00	20
Benzidine	0.100	0.00500	0.0334	5.00	33.4	10.0-120	<u>J4</u>	<u>J3</u>	148	36
Benzo(a)anthracene	0.0500	0.0362	0.0368	72.4	73.6	47.0-120			1.64	20
Benzo(b)fluoranthene	0.0500	0.0357	0.0362	71.4	72.4	46.0-120			1.39	20
Benzo(k)fluoranthene	0.0500	0.0367	0.0371	73.4	74.2	46.0-120			1.08	21
Benzo(g,h,i)perylene	0.0500	0.0370	0.0372	74.0	74.4	48.0-121			0.539	20
Benzo(a)pyrene	0.0500	0.0330	0.0336	66.0	67.2	47.0-120			1.80	20
Bis(2-chlorethoxy)methane	0.0500	0.0246	0.0287	49.2	57.4	33.0-120			15.4	24
Bis(2-chloroethyl)ether	0.0500	0.0254	0.0253	50.8	50.6	23.0-120			0.394	33
2,2-Oxybis(1-Chloropropane)	0.0500	0.0236	0.0286	47.2	57.2	28.0-120			19.2	31
4-Bromophenyl-phenylether	0.0500	0.0366	0.0386	73.2	77.2	45.0-120			5.32	20
2-Chloronaphthalene	0.0500	0.0279	0.0329	55.8	65.8	37.0-120			16.4	25

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQIWA	L1393343	09/03/21 09:47	42 of 47

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3696502-1 08/25/21 15:36 • (LCSD) R3696502-2 08/25/21 15:58

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
4-Chlorophenyl-phenylether	0.0500	0.0346	0.0373	69.2	74.6	44.0-120			7.51	20	
Chrysene	0.0500	0.0367	0.0374	73.4	74.8	48.0-120			1.89	20	
Dibenz(a,h)anthracene	0.0500	0.0373	0.0386	74.6	77.2	47.0-120			3.43	20	
3,3-Dichlorobenzidine	0.100	0.0525	0.0627	52.5	62.7	44.0-120			17.7	20	
2,4-Dinitrotoluene	0.0500	0.0373	0.0393	74.6	78.6	49.0-124			5.22	20	
2,6-Dinitrotoluene	0.0500	0.0346	0.0364	69.2	72.8	46.0-120			5.07	21	
Fluoranthene	0.0500	0.0382	0.0399	76.4	79.8	51.0-120			4.35	20	
Fluorene	0.0500	0.0338	0.0360	67.6	72.0	47.0-120			6.30	20	
Hexachlorobenzene	0.0500	0.0362	0.0384	72.4	76.8	44.0-120			5.90	20	
Hexachloro-1,3-butadiene	0.0500	0.0214	0.0278	42.8	55.6	19.0-120			26.0	32	
Hexachlorocyclopentadiene	0.0500	0.0134	0.0172	26.8	34.4	15.0-120			24.8	31	
Hexachloroethane	0.0500	0.0190	0.0260	38.0	52.0	15.0-120			31.1	37	
Indeno(1,2,3-cd)pyrene	0.0500	0.0375	0.0372	75.0	74.4	49.0-122			0.803	20	
Isophorone	0.0500	0.0234	0.0278	46.8	55.6	36.0-120			17.2	23	
Naphthalene	0.0500	0.0228	0.0278	45.6	55.6	27.0-120			19.8	27	
Nitrobenzene	0.0500	0.0223	0.0267	44.6	53.4	27.0-120			18.0	29	
n-Nitrosodimethylamine	0.0500	0.0151	0.0171	30.2	34.2	10.0-120			12.4	40	
n-Nitrosodiphenylamine	0.0500	0.0257	0.0303	51.4	60.6	47.0-120			16.4	20	
n-Nitrosodi-n-propylamine	0.0500	0.0204	0.0255	40.8	51.0	31.0-120			22.2	28	
Phenanthrene	0.0500	0.0347	0.0357	69.4	71.4	46.0-120			2.84	20	
Benzylbutyl phthalate	0.0500	0.0344	0.0359	68.8	71.8	43.0-121			4.27	20	
Bis(2-ethylhexyl)phthalate	0.0500	0.0341	0.0352	68.2	70.4	43.0-122			3.17	20	
Di-n-butyl phthalate	0.0500	0.0378	0.0392	75.6	78.4	49.0-121			3.64	20	
Diethyl phthalate	0.0500	0.0353	0.0360	70.6	72.0	48.0-122			1.96	20	
Dimethyl phthalate	0.0500	0.0361	0.0383	72.2	76.6	48.0-120			5.91	20	
Di-n-octyl phthalate	0.0500	0.0315	0.0332	63.0	66.4	42.0-125			5.26	20	
Pyrene	0.0500	0.0367	0.0378	73.4	75.6	47.0-120			2.95	20	
1,2,4-Trichlorobenzene	0.0500	0.0220	0.0274	44.0	54.8	24.0-120			21.9	29	
4-Chloro-3-methylphenol	0.0500	0.0216	0.0262	43.2	52.4	40.0-120			19.2	21	
2-Chlorophenol	0.0500	0.0170	0.0230	34.0	46.0	25.0-120			30.0	35	
2,4-Dichlorophenol	0.0500	0.0218	0.0283	43.6	56.6	36.0-120			25.9	26	
2,4-Dimethylphenol	0.0500	0.0187	0.0244	37.4	48.8	33.0-120		<u>J3</u>	26.5	26	
4,6-Dinitro-2-methylphenol	0.0500	0.0364	0.0408	72.8	81.6	38.0-138			11.4	25	
2,4-Dinitrophenol	0.0500	0.0308	0.0367	61.6	73.4	10.0-120			17.5	39	
2-Nitrophenol	0.0500	0.0214	0.0281	42.8	56.2	31.0-120			27.1	29	
4-Nitrophenol	0.0500	0.0120	0.0131	24.0	26.2	10.0-120			8.76	33	
Pentachlorophenol	0.0500	0.0374	0.0417	74.8	83.4	23.0-120			10.9	25	
Phenol	0.0500	0.00936	0.0108	18.7	21.6	10.0-120			14.3	36	
2,4,6-Trichlorophenol	0.0500	0.0295	0.0364	59.0	72.8	42.0-120			20.9	23	
(S) Nitrobenzene-d5		-		34.3	42.7	10.0-127					
()											
А	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	PAGE:
Cardno - Pe	achtree Corners,	GA		CHI	LOQIWA		L139334	13		09/03/21 09:47	43 of 47

Τс

Ss

Cn

Sr

QC

GI

A

QUALITY CONTROL SUMMARY Semi Volatile Organic Compounds (GC/MS) by Method 8270E L1393343-01,02,03,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3696502-1 08/25	5/21 15:36 • (LCS	D) R3696502	-2 08/25/2115	:58							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
(S) 2-Fluorobiphenyl				56.6	65.8	10.0-130					
(S) p-Terphenyl-d14				62.4	63.8	10.0-128					
(S) Phenol-d5				17.1	20.1	10.0-120					
(S) 2-Fluorophenol				22.8	29.0	10.0-120					
(S) 2,4,6-Tribromophenol				67.0	73.5	10.0-155					

ACCOUNT:
Cardno - Peachtree Corners, GA

DATE/TIME: 09/03/21 09:47

PAGE: 44 of 47 Тс

Ss

Cn

Sr

[°]Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
Ρ	RPD between the primary and confirmatory analysis exceeded 40%.

PROJECT: CHILOQIWA SDG: L1393343 AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1393343 PAGE: 46 of 47

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Company Name/Address:			Billing Info	rmation:				-	F	Analysis /	Contai	ner / Preservative	-	Chain of Custody	Page _ of	
6611 Bay Circle Suite 220			6611 Bar Suite 22	Ashton Smithwith Pres 6611 Bay Circle Suite 220 Peachtree Corners, GA 30071						67				- Prace	Analytica	
Peachtree Corners. GA 30071 Report to:		Email To: v	Email To: william.smithwick@cardno.com							100		-	12065 Lebanon Rd Mount Submitting a sample via th			
William Smithwick		1011 / Ch 1					1-81				3		-	constitutes acknowledgme Pace Terms and Condition	ent and acceptance o s found at:	
Project Description: Klamath Falls - Chiloquin, OR		City/State Collected:	chiloguin	LIOR	Please C		HC		In	m	es		100	https://info.pacelabs.com terms.pdf	/nubts/pas-standard	
Phone: 678-443-1199	Client Pro CH	ILURIUS		Lab Project	# PCGA-CHILOQ	UIN	mlAmb	40mlAmb-HCI-BT HCI		PE-HNO	nb NoPr			SDG # C230	0	
Collected by (print): A. Smithwilk	Site/Facili	ty ID #		P.O. #		1	SGT 40	mb HCI	il Amb-NoPres	MIHDP	ml Am	0-HCI			Acctnum: CARDNOPCGA	
Colleged by (signature): Rush? (Lab MUST Be Same Day Five D Next Day Soay		Day	Quote #	esults Needed	No.	WWTPHDXLVINOSGT 4	NWTPHGX 40mlAmb	- 8082 100ml		8270 100ml Amb NoPres	40mlAmb-HCl		Template:T192 Prelogin: P865 PM: 206 - Jeff Ca PB: TN 8-	915 rr		
Packed on Ice N Y Y	Comp/Gr	rab Matrix *	Depth	Date	Time	of Cntrs	NWTPH	WTPHO	PCBs - 8	RCRA M	SVOCs -	V8260C		Shipped Via: Fec	and the second sec	
TMW-1	Grab	GW		8.18.7	21 1130	12	X	x	0	x	X	X	1.2		-0	
TMW-2	1	GW		1	0910	13	X	X	*	x	x	X	1.14	pissolved m	etals_	
TMW-3		GW			1330	12	TAX	X	1	X	x	X		or c. kinter		
TMW-4		GW			1240	11	X	x		x	x	X			-0	
TMW-5		GW			1020	13	X	x	X	X	x	X			-0	
TMW-3 DUP	V	GW		V	1335	3	Transa and	14		×	N	X		Vocsonh	-0	
		GW				11	20100	X		X	×	X		-		
		GW				3						X				
* * * * *	hannal					1										
* Matrix: Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater				The second				pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact: _NP COC Signed/Accurate: Bottles arrive intact: Correct bottles used:					
DW - Drinking Water OT - Other	Samples retur UPSFe	ned via: dExCourier		Tr	acking # 52	1-	13	30	517	13156			100000	Sufficient volume sent: If Applicable VOA Zero Headspace:		
Relinquished By: (Signature) Date: Relinquished By: (Signature) Date: 8.18,		Date: 8.18.2	1 16	: Re	Received by: (Signature)					Trip Blan		ved: Kes No HC / MeoH TBR	Preserva RAD Scre	Preservation Correct/Checked: RAD Screen <0.5 mR/hr:		
Refinquished by : (Signature) Date:		1	Time	: Re	eceived by: (Signa	iture)		Temp: 3.6-1-			emp: °C Bottles Received: B.6-1-3.543 02			If preservation required by Login: Date/Time		
Relinquished by : (Signature)		Date:	Time	13	eceived for lab by	ature) France			Date: Time:			Hold:		Condition		

Pace Analytical® ANALYTICAL REPORT

August 27, 2021

Cardno - Peachtree Corners, GA

Sample Delivery Group: Samples Received: Project Number: Description:

L1393214 08/20/2021 CHIL0Q120 Chiloquin, OR

Report To:

William Smithwick 6611 Bay Circle Suite 220 Peachtree Corners, GA 30071 Тс Ss Cn Su GI AI Sc

Entire Report Reviewed By:

Vubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Cardno - Peachtree Corners, GA

PROJECT: CHIL0Q120

SDG: L1393214

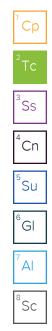
DATE/TIME: 08/27/2114:32

PAGE:

1 of 35

TABLE OF CONTENTS

Cp: Cover Page		1
Tc: Table of Contents		2
Ss: Sample Summary		4
Cn: Case Narrative		5
Su: Summary Results		6
6010D Metals (ICP)		7
Sample Result Inorganic Analysis Data Sheet		7
L1393214-01 08/27/21 02:03 ICP12		7
L1393214-02 08/27/21 02:06 ICP12		8
BLANK(R3697192-1) WG1729585 08/27/21 01:2	24 ICP12	9
LCS(R3697192-2) WG1729585 08/27/21 01:26	ICP12	10
MS(R3697192-4) WG1729585 08/27/21 01:34 I	CP12	11
MSD(R3697192-5) WG1729585 08/27/21 01:36	ICP12	12
SD(R3697192-3) WG1729585 08/27/21 01:32 K	CP12	13
Calibration Verification		14
ICP12 082621ICP12		14
Blank		17
ICP12 082621ICP12		17
ICP Interference Check Sample		19
ICP12 08/26/21 16:42		19
ICP12 08/26/21 23:24		20
ICP12 08/27/21 05:04		21
Matrix Spike / Duplicate		22
WG1729585 MS(R3697192-4) MSD(R3697192-	5)	22
Laboratory Control Sample / Duplicate		23
WG1729585 LCS(R3697192-2)		23
Serial Dilution		24
WG1729585 SD(R3697192-3)		24
Detection Limit Summary		25
6010D - Waste		25
Interelement Correction Factor		26
ICP12 08/24/21 13:38		26
Linear Dynamic Range		28
ICP12 06/16/21 08:38		28
Analysis Log		29
ICP12 082621ICP12 08/26/21 16:03		29
Initial Calibration Recovery		30
ICP12 082621ICP12 08/26/21 16:03		30
Initial Calibration		32
ICP12 082621ICP12 08/26/21 16:03		32
ACCOUNT: PROJECT:	SDG:	DATE/TIME:


¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Su ⁶ GI ⁷ AI ⁸ Sc

PROJECT: CHILOQ120

L1393214

PAGE: 2 of 35

GI: Glossary of Terms	33
Al: Accreditations & Locations	34
Sc: Sample Chain of Custody	35

PROJECT: CHILOQ120 SDG: L1393214 DATE/TIME: 08/27/2114:32

PAGE: 3 of 35

SAMPLE SUMMARY

		Collected by	Collected date/time	Received da	te/time
		A. Smithwick	08/18/21 00:00	08/20/21 09	:00
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1728099	1	08/24/21 15:04	08/24/21 15:04	TDW	Mt. Juliet, TN
WG1729585	1	08/25/21 18:19	08/27/21 02:03	CCE	Mt. Juliet, TN
		Collected by	Collected date/time	Received da	te/time
		A. Smithwick	08/18/21 00:00	08/20/21 09	:00
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1728099	1	08/24/21 15:04	08/24/21 15:04	TDW	Mt. Juliet, TN
W/G1729585	1	08/25/21 18.10	08/27/21 02:06	CCE	Mt. Juliet, TN
	WG1728099 WG1729585 Batch	WG1728099 1 WG1729585 1 Batch Dilution WG1728099 1	A. SmithwickBatchDilutionPreparation date/timeWG1728099108/24/21 15:04 08/25/21 18:19WG1729585108/25/21 18:19Collected by A. SmithwickCollected by A. SmithwickBatchDilutionPreparation date/timeWG1728099108/24/21 15:04	A. Smithwick08/18/21 00:00BatchDilutionPreparation date/timeAnalysis date/timeWG1728099108/24/21 15:0408/24/21 15:04WG1729585108/25/21 18:1908/27/21 02:03Collected by A. SmithwickCollected date/time 08/18/21 00:00Collected date/time date/timeBatchDilutionPreparation date/timeAnalysis date/timeWG1728099108/24/21 15:0408/24/21 15:04	A. Smithwick08/18/21 00:0008/20/21 09BatchDilutionPreparation date/timeAnalysis date/timeAnalysisWG1728099108/24/21 15:0408/24/21 15:04TDW WG1729585WG1729585108/25/21 18:1908/27/21 02:03CCECollected by A. SmithwickCollected date/timeReceived da 08/18/21 00:0008/20/21 09BatchDilutionPreparation date/timeAnalysis date/timeAnalysis TDWWG1728099108/24/21 15:0408/24/21 15:04TDW

Ср

²Tc

Ss

SDG: L1393214 DATE/TIME: 08/27/2114:32

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

SDG: L1393214

PAGE: 5 of 35 6010D Metals (ICP)

SDG: L1393214 DATE/TIME: 08/27/21 14:22

Lab Sample ID:	L1393214-01	SDG:	L1393214
Client Sample ID:	RP-01	Collected Date/Time:	08/18/21 00:00
Lab File ID:	20210827020335	Received Date/Time:	08/20/21 09:00
Instrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 02:03
Dilution Factor:	1	Prep Method:	3015
Analytical Method:	6010D	Sample Vol Used:	
Matrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	ND		0.0330	0.100

SDG: L1393214

ab Sample ID:	L1393214-02	SDG:	L1393214
Client Sample ID:	RP-02	Collected Date/Time:	08/18/21 00:00
ab File ID:	20210827020616	Received Date/Time:	08/20/21 09:00
nstrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 02:06
Dilution Factor:	1	Prep Method:	3015
nalytical Method:	6010D	Sample Vol Used:	
Aatrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	ND		0.0330	0.100

Total Solids (%):		Final Wt/Vol:	50 mL
Matrix:	Waste	Initial Wt/Vol:	5 mL
Analytical Method:	6010D	Sample Vol Used:	
Dilution Factor:	1	Prep Method:	3015
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 01:24
nstrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Lab File ID:	20210827012400	Received Date/Time:	
Client Sample ID:	BLANK	Collected Date/Time:	
Lab Sample ID:	R3697192-1	SDG:	L1393214

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	U		0.0333	0.100

ACCOUNT:

Cardno - Peachtree Corners, GA

DATE/TIME: 08/27/2114:22

SAMPLE NO.: R3697192-2

Lab Sample ID: Client Sample ID:	R3697192-2 LCS	SDG: Collected Date/Time:	L1393214
Lab File ID:	20210827012625	Received Date/Time:	
Instrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 01:26
Dilution Factor:	1	Prep Method:	3015
Analytical Method:	6010D	Sample Vol Used:	
Matrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	9.77		0.0333	0.100

SAMPLE NO.: R3697192-4

Lab Sample ID:	R3697192-4	SDG:	L1393214
Client Sample ID:	MS	Collected Date/Time:	08/16/21 11:15
Lab File ID:	20210827013429	Received Date/Time:	08/20/21 08:00
nstrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 01:34
Dilution Factor:	1	Prep Method:	3015
nalytical Method:	6010D	Sample Vol Used:	
Aatrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	9.83		0.0333	0.100

1-IN

SDG: L1393214

ab Sample ID:	R3697192-5	SDG:	L1393214
Client Sample ID:	MSD	Collected Date/Time:	08/16/21 11:15
ab File ID:	20210827013654	Received Date/Time:	08/20/21 08:00
nstrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 01:36
Dilution Factor:	1	Prep Method:	3015
nalytical Method:	6010D	Sample Vol Used:	
Matrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	9.86		0.0333	0.100

SAMPLE NO.: R3697192-3

ab Sample ID:	R3697192-3	SDG:	L1393214
Client Sample ID:	SD	Collected Date/Time:	08/16/21 11:15
ab File ID:	20210827013201	Received Date/Time:	08/20/21 08:00
nstrument ID:	ICP12	Preparation Date/Time:	08/25/21 18:19
Analytical Batch:	WG1729585	Analysis Date/Time:	08/27/21 01:32
Dilution Factor:	5	Prep Method:	3015
Analytical Method:	6010D	Sample Vol Used:	
Aatrix:	Waste	Initial Wt/Vol:	5 mL
Total Solids (%):		Final Wt/Vol:	50 mL

Analyte	CAS	Result	Qualifier	MDL	RDL
		mg/l		mg/l	mg/l
Lead	7439-92-1	ND		0.167	0.500

CALIBRATION VERIFICATION

SDG:	L1393214	Calibration (begin) date/time:	08/26/21 16:03
Instrument ID:	ICP12	Calibration (end) date/time:	08/26/21 16:20
Analytical Method:	6010D	Analytical Run:	082621ICP12
Concentration Units:	mg/l		

			IC	v			ICVI	LL			cc	v	
	Sample ID:	1	ICP120826	6211623-	-2		ICP120826	211633	-2		ICP12082	7210111-	2
Analyte		True	Found	%R	%RSD	True	Found	%R	%RSD	True	Found	%R	%RSD
LEAD		1	0.9993387	99.9 0	0.206000	0.0050	0.005616919	112	20.300000	0.50	0.5050739	101	0.361000

ICV Limits: 90 - 110	ICVLL Limits: 80 - 120	CCV Limits: 90 - 110	CCVLL Limits: 50 - 150	
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQ120	L1393214	08/27/2114:22	14 of 35

CALIBRATION VERIFICATION

SDG:	L1393214	Calibration (begin) date/time:	08/26/21 16:03
Instrument ID:	ICP12	Calibration (end) date/time:	08/26/21 16:20
Analytical Method:	6010D	Analytical Run:	082621ICP12
Concentration Units:	mg/l		

			cc	V			C	cv			cc	:V	
	Sample ID:		ICP120827	7210118	-2		ICP12082	7210150	-2		ICP12082	2721021	1
Analyte		True	Found	%R	%RSD	True	Found	%R	%RSD	True	Found	%R	%RSD
LEAD		0.50	0.5042665	101	0.314000	0.50	0.50595	101	0.671000	0.50	0.5113141	102	0.572000

ICV Limits: 90 - 110	ICVLL Limits: 80 - 120	CCV Limits: 90 - 110	CCVLL Limits: 50 - 150	
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHIL0Q120	L1393214	08/27/21 14:22	15 of 35

CALIBRATION VERIFICATION

SDG:	L1393214	Calibration (begin) date/time:	08/26/21 16:03	
Instrument ID:	ICP12	Calibration (end) date/time:	08/26/21 16:20	
Analytical Method:	6010D	Analytical Run:	082621ICP12	
Concentration Units:	mg/l			

		CCVLL								
	Sample ID:	ICP120827210852-2								
Analyte		True	Found	%R	%RSD					
LEAD		0.0050	0.003182933	63.7 0	31.600000					

ICV Limits: 90 - 110	ICVLL Limits: 80 - 120	CCV Limits: 90 - 110	CCVLL Limits: 50 - 150	
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHIL0Q120	L1393214	08/27/2114:22	16 of 35

SDG: Instrument Analytical N		L1393214 ICP12 6010D		Cal	ibration (beg ibration (end alytical Run:	in) date/time:) date/time:	08/26	5/21 16:03 5/21 16:20 21ICP12	
 Analytical N	Sample ID:		ICB Qual	CCB Result	CCB Qual	CCB Result	CCB Qual		BLANK Qual
Analyte	File ID:	20210826162546 mg/l	5-2	20210827011358 mg/l	-2	20210827012110- mg/l	2	20210827012400 mg/l	
LEAD		0.001593365	U	0.0009517472	U	0.0009832964	U	U	

BLANKS

3-IN

SDG: L1393214 DATE/TIME: 08/27/2114:22

PAGE: 17 of 35

3-IN		E	BLANKS					
SDG:		Calibra	08/26/21 16:03	3				
Instrument ID:	ICP12		Calibration (end) date/time:			08/26/21 16:20		
Analytical Method:	Analytical Method: 6010D			Analytical Run:				
	•	CCB Result 20210827015256	CCB Qual 6-2	CCB Result 20210827021417	CCB Qual			
	Analyte	mg/l		mg/l				
	LEAD	0.0004943883	U	-0.0005048188	U			

SDG: L1393214 DATE/TIME: 08/27/2114:22

PAGE: 18 of 35

INTERFERENCE CHECK SAMPLE

SDG: Instrument ID: Instrument Run:	L1393214 ICP12 082621ICP12	An: Dai	alytical Method: te:		6010D 08/26/21 16:42		
Analyte	True	Found	ł	True	Found		
	ICSA	ICSA	ICSA	ICSAB	ICSAB	ICSAB	
	mg/l	mg/l	% Rec.	mg/l	mg/l	% Rec.	
ALUMINUM	500	502.0379	100	500	501.9921	100	
ANTIMONY	0	0.02755975		0.50	0.5643993	113	
ARSENIC	0	-0.03494365		0.50	0.512478	102	
BARIUM	0	0.002959076		0.50	0.5423834	108	
BERYLLIUM	0	-0.00007358297		0.50	0.4979079	99.60	
BORON	0	-0.09021902		1	0.9626316	96.30	
CADMIUM	0	0.0009786234		1	1.087652	109	
CALCIUM	500	508.4613	102	500	507.7226	102	
CERIUM	0	0.1681203		0	0.1955043		
CHROMIUM	0	0.0009804087		0.50	0.5208367	104	
COBALT	0	-0.0004623029		0.50	0.5075576	102	
COPPER	0	0.005100224		0.50	0.5784515	116	
HOT WATER SOL. BORON	0	-0.09021902		0	0.9626316		
RON	200	201.8789	101	200	203.5889	102	
LANTHANUM	0	-0.005494578		0	-0.009495438		
LEAD	0	-0.03503772		1	0.9580334	95.80	
LITHIUM	0	0.001406181		0	0.003878799		
MAGNESIUM	500	514.5004	103	500	517.2876	103	
MANGANESE	0	0.004084937		0.50	0.5137185	103	
MOLYBDENUM	0	0.000217832		0.50	0.5360155	107	
NICKEL	0	-0.003223017		1	0.9933387	99.30	
PHOSPHORUS	0	0.005994708		0	0.005210479		
POTASSIUM	0	-0.09904029		0	-0.04067108		
SELENIUM	0	0.02472459		0.50	0.5785699	116	
SILICON	0	-0.01150722		1	1.071702	107	
SILVER	0	-0.0007341132		1	1.114799	111	
SODIUM	0	0.1562164		0	0.1747456		
STRONTIUM	0	0.003898679		0	0.004028935		
SULFUR	0	-0.07472075		0	-0.09834596		
THALLIUM	0	-0.01106474		0.50	0.4809626	96.20	
TIN	0	-0.01255101		0.50	0.477174	95.40	
TITANIUM	0	0.009308359		0.50	0.5261634	105	
VANADIUM	0	-0.0007290835		0.50	0.5038603	101	
ZINC	0	0.0002950366		1	0.9970569	99.70	

ICSA Limits: 80 - 120

ICSAB Limits: 80 - 120

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHIL0Q120 SDG: L1393214 DATE/TIME: 08/27/2114:22

PAGE: 19 of 35

INTERFERENCE CHECK SAMPLE

Analyte	True ICSA mg/l	Found ICSA	4	-		
ALUMINUM		/CSA		True	Found	
ALUMINUM	mg/l		ICSA	ICSAB	ICSAB	ICSAB
ALUMINUM		mg/l	% Rec.	mg/l	mg/l	% Rec.
	500	551.2503	110	500	575.7381	115
ANTIMONY	0	0.03180174		0.50	0.5606752	112
ARSENIC	0	-0.01864892		0.50	0.5438317	109
BARIUM	0	0.003478609		0.50	0.5586314	112
BERYLLIUM	0	-0.00004508121		0.50	0.5439089	109
BORON	0	-0.1022247		1	1.068909	107
CADMIUM	0	0.00076298		1	1.126211	113
CALCIUM	500	535.6206	107	500	544.739	109
CERIUM	0	0.2528661		0	0.3506344	
CHROMIUM	0	0.0008172511		0.50	0.5295011	106
COBALT	0	-0.0003726358		0.50	0.5287809	106
COPPER	0	0.005507577		0.50	0.5803618	116
HOT WATER SOL. BORON	0	-0.1022247		0	1.068909	
RON	200	218.5789	109	200	221.237	111
ANTHANUM	0	-0.005088498		0	-0.007204261	
EAD	0	-0.03669559		1	0.9730582	97.30
ITHIUM	0	0.001343081		0	0.001781075	
MAGNESIUM	500	570.2284	114	500	578.9104	116
MANGANESE	0	0.004378487		0.50	0.5503041	110
MOLYBDENUM	0	0.001395187		0.50	0.5510551	110
NICKEL	0	-0.003192652		1	1.022575	102
PHOSPHORUS	0	0.01065495		0	0.01082105	
POTASSIUM	0	0.01223173		0	0.03494858	
SELENIUM	0	0.03445835		0.50	0.5990063	120
SILICON	0	0.0003109475		1	1.094995	109
SILVER	0	-0.0008659254		1	1.145005	115
SODIUM	0	0.2397492		0	0.262562	
STRONTIUM	0	0.004272831		0	0.004531666	
SULFUR	0	-0.0847923		0	-0.08784118	
THALLIUM	0	-0.01751272		0.50	0.495921	99.20
TIN	0	-0.01262536		0.50	0.4756486	95.10
TITANIUM	0	0.01215882		0.50	0.5784899	116
VANADIUM	0	-0.002840961		0.50	0.5473146	109
ZINC	0	0.0001905174		1	1.094725	109

ICSAB Limits: 80 - 120

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHIL0Q120 SDG: L1393214 DATE/TIME: 08/27/21 14:22

PAGE: 20 of 35

INTERFERENCE CHECK SAMPLE

SDG: Instrument ID: Instrument Run:	L1393214 ICP12 082621ICP12	alytical Method: te:	ical Method: 6010D 08/27/21 05:04					
Analyte	True	Found	ł	True	Found			
	ICSA	ICSA	ICSA	ICSAB	ICSAB	ICSAB		
	mg/l	mg/l	% Rec.	mg/l	mg/l	% Rec.		
ALUMINUM	500	502.5224	101	500	503.1821	101		
ANTIMONY	0	0.01808757		0.50	0.5479234	110		
ARSENIC	0	-0.01754558		0.50	0.4844012	96.90		
BARIUM	0	0.002872428		0.50	0.5287579	106		
BERYLLIUM	0	-0.00006848697		0.50	0.4789366	95.80		
BORON	0	-0.07727791		1	0.9152908	91.50		
CADMIUM	0	0.001028797		1	1.050905	105		
CALCIUM	500	458.3567	91.70	500	457.1739	91.40		
CERIUM	0	0.05331246		0	0.08013209			
CHROMIUM	0	0.001037285		0.50	0.4979886	99.60		
COBALT	0	-0.0001226026		0.50	0.4784037	95.70		
COPPER	0	0.003390379		0.50	0.5581955	112		
HOT WATER SOL. BORON	0	-0.07727791		0	0.9152908			
RON	200	182.4722	91.20	200	183.1418	91.60		
ANTHANUM	0	-0.008883124		0	-0.008419473			
EAD	0	-0.02885473		1	0.8757265	87.60		
ITHIUM	0	0.005254951		0	0.00377048			
MAGNESIUM	500	445.6935	89.10	500	446.0002	89.20		
MANGANESE	0	0.004292363		0.50	0.508835	102		
MOLYBDENUM	0	0.001307683		0.50	0.5198888	104		
NICKEL	0	-0.001906144		1	0.9211901	92.10		
PHOSPHORUS	0	0.01053435		0	0.0091215			
POTASSIUM	0	-0.09170468		0	-0.07259864			
SELENIUM	0	0.02223213		0.50	0.5161625	103		
SILICON	0	0.0202869		1	1.094529	109		
SILVER	0	0.0001814243		1	1.161678	116		
SODIUM	0	0.1001602		0	0.08107117			
STRONTIUM	0	0.004067084		0	0.004128314			
SULFUR	0	-0.05367699		0	-0.07892034			
THALLIUM	0	-0.01282431		0.50	0.4551179	91		
ΓIN	0	-0.01341143		0.50	0.430177	86		
ΓΙΤΑΝΙUΜ	0	0.006659427		0.50	0.5121024	102		
/ANADIUM	0	0.001032534		0.50	0.48235	96.50		
ZINC	0	0.005763101		1	0.833053	83.30		

ICSA Limits: 80 - 120

ICSAB Limits: 80 - 120

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHIL0Q120 SDG: L1393214 DATE/TIME: 08/27/2114:22

PAGE: 21 of 35

5A-IN

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY L1393214-01,02

SAMPLE NO.: R3697192-4 R3697192-5

MS Sample / File ID: MSD Sample / File ID: OS Sample / File ID: Instrument ID:	R3697192-4 / R3697192-5 / L1393142-01 / ICP12	20210827	013654		SDG: Analytical Batch: Matrix:		Analytical Batch: WG1729585			
Analytical Method:	6010D									
Analyte	Spike Amount	OS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	RPD	RPD Limits
	mg/l	mg/l	mg/l	mg/l	%	%		%	%	%
Lead	10.0	ND	9.83	9.86	98.3	98.6	1	75.0 - 125	0.373	20

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHIL0Q120	L1393214	08/27/2114:22	22 of 35

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY L1393214-01,02

SAMPLE NO.: R3697192-2

LCSI Instr	Sample / File ID: D Sample / File ID: ument ID: ytical Method:	R3697192-2 ICP12 6010D	/ 202108270	012625		SDG: Analytical Batch: Dilution Factor: Matrix:		L1393214 WG172958 1 Waste	5	
And	Analyte	00100	Spike Amount	LCS Result	LCSD Result	LCS Rec.		Rec. Limits	RPD	RPD Limits
			mg/l	mg/l		%	%	%	%	%
	Lead		10.0	9.77		97.7		80.0 - 120		

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQ120	L1393214	08/27/2114:22	23 of 35

ICP AND ICP/MS SERIAL DILUTIONS L1393214-01,02

	Analyte	OS Result	SD Result	RPD	RPD Limits	
Analytical Method:	6010D					
Instrument ID:		Matrix:			Waste	
Lab File ID:	20210827013201		Dilutio	n Factor:	5	
OS Sample / File ID:	L1393142-01 / 20210827012909		Analyti	cal Batch:		WG1729585
SD Sample / File ID:	R3697192-3 / 20210827013201		SDG:			L1393214

mg/l

ND

%

0.000

mg/l

ND

%

10

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

Lead

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cardno - Peachtree Corners, GA	CHILOQ120	L1393214	08/27/21 14:22	24 of 35

DETECTION LIMIT SUMMARY

Lab : Matr	Sample IDs: ix:	L1393214-01,0 Waste	2		Analytical Method: Prep Method:	6010E 3015)
	Analyte		CAS	Wavelength	Mass	MDL mg/l	RDL mg/l
	Lead		7439-92-1	189.0420	220.3530	0.0330	0.10

SDG: L1393214 DATE/TIME: 08/27/21 14:22

10A-IN

INTERELEMENT CORRECTION FACTORS

SDG:		L1393214		Analytica	al Method:	60	010D	
Instrumen	t ID:	ICP12		Date:		80	8/24/21 13:38	
Analyte	Wavelength	ARSENIC	CALCIUM	CHROMIUM	COBALT	COPPER	IRON	LANTHANUM
	nm	189.0420	317.9330	267.7160	228.6160	324.7540	259.94	333.7490
ALUMINUM	308.2150							
ANTIMONY	206.8330			-0.00010364				
ARSENIC	189.0420							-0.00520043
BARIUM	233.5270						-0.00011317	
BERYLLIUM	313.0420							
CADMIUM	228.8020	-0.25019590						
CHROMIUM	267.7160							
COBALT	228.6160							
IRON	271.4410				-0.00018664			
LEAD	220.3530					-0.00003085		-0.00013179
LITHIUM	670.7840		-0.00032182					
SELENIUM	196.09			-0.00001854				
THALLIUM	190.8560				-0.00026544			

SDG: L1393214 DATE/TIME: 08/27/2114:22

10A-IN

INTERELEMENT CORRECTION FACTORS

DG:	L1393	214		Analytical Method	4:	6010D	
strument ID:	ICP12			Date:		08/24/21 13:38	
Analyte	Wavelength	MANGANESE	SILICON	TIN	TITANIUM	VANADIUM	
	nm	257.61	251.6110	189.9890	334.9410	292.4020	
ALUMINUM	308.2150					-0.00434031	
ANTIMONY	206.8330			-0.00419814			
ARSENIC	189.0420						
BARIUM	233.5270						
BERYLLIUM	313.0420					-0.02889282	
CADMIUM	228.8020						
CHROMIUM	267.7160	-0.00003148					
COBALT	228.6160				-0.00101627		
IRON	271.4410						
LEAD	220.3530		-0.00008881				
LITHIUM	670.7840						
SELENIUM	196.09						
THALLIUM	190.8560	-0.00000492					

SDG: L1393214 DATE/TIME: 08/27/2114:22

LINEAR DYNAMIC RANGE

SDG: Instrument ID:	L1393214 ICP12	Analy Date:	tical Method:	6010D 06/16/21 08:38
instrument ID:		Date:		00/10/21 00.30
		Analyte	LDR	
			ppm	
		ALUMINUM	500	-
		ANTIMONY	10	
		ARSENIC	50	
		BARIUM	50	
		BERYLLIUM	10	
		BORON	50	
		CADMIUM	10	
		CALCIUM	1000	
		CHROMIUM	50	
		COBALT	50	
		COPPER	50	
		IRON	500	
		LEAD	100	
		LITHIUM	10	
		MAGNESIUM	1000	
		MANGANESE	20	
		MOLYBDENUM	20	
		NICKEL	50	
		PHOSPHORUS	200	
		POTASSIUM	500	
		SELENIUM	10	
		SILICON	40	
		SILVER	10	
		SODIUM	1000	
		STRONTIUM	20	
		SULFUR	200	
		THALLIUM	10	
		TIN	50	
		TITANIUM	50	
		VANADIUM	20	
		ZINC	20	

SDG: L1393214 DATE/TIME: 08/27/21 14:22

ANALYSIS LOG

SDG:	L1393214	Analytical Meth	od:	6010D	
Instrument ID:	ICP12	Calibration Star		08/26/21 16:03	
Analytical Run:	082621ICP12	Calibration End	Date:	08/26/21 16:20	
Client Sample ID	Lab Sample ID	File ID	Analysis Date Time	Dilution	Batch
CALBLK	ICP120826211601	20210826160102	08/26/21 16:01		
CAL	STD1	20210826160349	08/26/21 16:03		
CAL	STD2	20210826160620	08/26/21 16:06		
CAL	STD3	20210826160846	08/26/21 16:08		
CAL	STD4	20210826161118	08/26/21 16:11		
CAL	STD5	20210826161357	08/26/21 16:13		
CAL	STD6	20210826161653	08/26/21 16:16		
CAL	STD7	20210826162006	08/26/21 16:20		
ICV	ICP120826211623-2	20210826162302-2	08/26/21 16:23		
ICB	ICP120826211625-2	20210826162546-2	08/26/21 16:25		
CVLL	ICP120826211633-2	20210826163341-2	08/26/21 16:33		
CSA	ICP120826211642-2	20210826164235-2	08/26/21 16:42		
CSAB	ICP120826211645-2	20210826164528-2	08/26/21 16:45		
CSA	ICP120826212324-2	20210826232404-2	08/26/21 23:24		
ICSAB	ICP120826212326-2	20210826232657-2	08/26/21 23:26		
CCV	ICP120827210111-2	20210827011107-2	08/27/21 01:11		
ССВ	ICP120827210113-2	20210827011358-2	08/27/21 01:13		
CCV	ICP120827210118-2	20210827011817-2	08/27/21 01:18		
ССВ	ICP120827210121-2	20210827012110-2	08/27/21 01:21		
BLANK	R3697192-1	20210827012400	08/27/21 01:24	1	WG1729585
LCS	R3697192-2	20210827012625	08/27/21 01:26	1	WG1729585
OS	L1393142-01	20210827012909	08/27/21 01:29		
_1393142-01	L1393142-01	20210827012909	08/27/21 01:29	1	WG1729585
SD	R3697192-3	20210827013201	08/27/21 01:32	5	WG1729585
MS	R3697192-4	20210827013429	08/27/21 01:34	1	WG1729585
MSD	R3697192-5	20210827013654	08/27/21 01:36	1	WG1729585
CCV	ICP120827210150-2	20210827015003-2	08/27/21 01:50		
ССВ	ICP120827210152-2	20210827015256-2	08/27/21 01:52		
RP-01	L1393214-01	20210827020335	08/27/21 02:03	1	WG1729585
RP-02	L1393214-02	20210827020616	08/27/21 02:06	1	WG1729585
CCV	ICP120827210211	20210827021127	08/27/21 02:11		
ССВ	ICP120827210214	20210827021417	08/27/21 02:14		
CSA	ICP120827210504-2	20210827050442-2	08/27/21 05:04		
ICSAB	ICP120827210507-2	20210827050738-2	08/27/21 05:07		
CCVLL	ICP120827210852-2	20210827085229-2	08/27/21 08:52		

SDG: L1393214 DATE/TIME: 08/27/2114:22

INITIAL CALIBRATION RECOVERY

SDG: Instrument ID: Analytical Method:	L1393214 ICP12 6010D			Calibration (begin) date Calibration (end) date/ Analytical Run:		08/26/21 16:0 08/26/21 16:2 082621ICP12	0
Analyte		Std Conc mg/l	Result mg/l	Rec. %	Std Conc mg/l	Result mg/l	Rec. %
LEAD File ID:		0.0050	.005706251 202108261603	114 349	0.50	.5014866 20210826160620	100 0

PROJECT: CHILOQ120 SDG: L1393214 DATE/TIME: 08/27/2114:22

PAGE: 30 of 35

INITIAL CALIBRATION RECOVERY

SDG: Instrument ID: Analytical Method:	L1393214 ICP12 6010D		Calibration (begin) date/time: 08/26/21 16:03 Calibration (end) date/time: 08/26/21 16:20 Analytical Run: 0826211CP12				
Analyte		Std Conc	Result	Rec.	Std Conc	Result	Rec.
		mg/l	mg/l	%	mg/l	mg/l	%
LEAD		1	.9953524	99.50	2	2.00195	100
File ID:			2021082616084	6		20210826161118	

SDG: L1393214 DATE/TIME: 08/27/2114:22

16A-IN			INITIAL CALIBRATION						
SDG:		L1393214			on (begin) date/ti		08/26/21		
Instrume		ICP12			on (end) date/tim	e:	08/26/21		
Analytic	al Method:	6010D		Analytica	l Run:		082621IC	P12	
	Analyte		Wavelength	Cal. Type	Weightage	Corr.	Slope	Incpt	
	LEAD		220.353	8	5	0.999995	814.8551	3.229964	

Calibration Type

8 = Linear Regression Forced through Blank

Weightage

5 = None

ACCOUNT: Cardno - Peachtree Corners, GA PROJECT: CHIL0Q120 SDG: L1393214

ם 20

DATE/TIME: 08/27/2114:22 PAGE: 32 of 35

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Corr.	Correlation Coefficient.
Incpt	Intercept.
Mass	Mass of parameter.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Slope	Slope of calibration curve.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Wavelength	Wavelength of parameter.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1393214 Τс

Ss

Cn

Su

ίGΓ

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1393214 DATE/TIME: 08/27/2114:32 PAGE: 34 of 35

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Su ⁶ GI ⁷ AI ⁸ Sc

			ormation:						Ar	alysis / Cor	tainer /	Preservati	ve	Chain of Custody Page of		
		Ashte Genze -Voro	n Smith Dog Circle Noss, GA	hwive Stez 30071	20	Pres Chk			and the second	and the second					Pace	Analytical * Center for Testing & Innovation
Report to: A. Snithwick		Email To: ພໍ່າໃດ້ປ	m. Smith	wicker	Cevergna, 6	m			ALC: NOT						12065 Lebanon R Mount Juliet, TN Phone: 615-758-5	7122
Project Description:		City/State Collected:	Chilosuin	IOR	Please C PT MT C	Circle: CT ET			「日日						Phone: 800-767-5 Fax: 615-758-585	
Phone:	Client Project # CHILDO		Lab Project												SDG #	139 3214
Collected by (print): A. Smithmille	Site/Facility ID #		P.O. #				「						清		Acctnum:	
Collected by (signature):	Rush? (Lab MU Same Day Next Day Two Day Three Day		Quote #	e Results N	eeded	No. of	d tub								Template: Prelogin: PM: PB:	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	Lead				all and				Shipped Via: Remarks	Sample # (lab only)
RP-01	Comp		8	.18.21	a de la como	1	X	1. A.	3						TUP	-01
RP-02	1-			L	. A.K	1	X		The second						TCL?	-0/ -02
					1						and the second s					
K. K.									ALC: NO		-					
						1			N. CO				_			and the second
1997 - 1997 -	9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-			1		-			-	264				in and the
and the second											-	1			-	
and the second s			199			1										
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay WW - WasteWater WW - Drinking Water DT - Other	Remarks: Samples returned via UPSFedEx			Trackin	8# 5	11-	74	436	219	pH Flow	1	ther)	COC Sea COC Sig Bottles Correct Suffici	Sample Receipt (1 Present/Intac ned/Accurate: arrive intact: bottles used: ent volume sent <u>If Applica</u> Vendersen:	t:NPNN NN NN NN N N
Relinquished by : (Signature)	Date	18:21	rime: 16D	Receive	d by: (Signat	ure)		×	1 (Sec. 1	rip Blank Re	ceived:	Yes/No HCL/M TBR		Preserv	o Headspace: ation Correct/C een <0.5 mR/hr:	
felinquished by : (Signature)	Date		lime:	Receive	d by: (Signat	ure)		3	I	BA	°C E	ottles Recei	Ved:	If preserv	ation required by L	ogin: Date/Time
elinquished by : (Signature)	Date		lime:	Receive	d for lab by:	(Signat	ure)		0	ate:		ime: 9:0	0	Hold:		Condition: NCF / DK

-9-

Report for:

W. Ashton Smithwick Cardno 6611 Bay Circle Suite 220 Norcross, GA 30071

Regarding: Project: CH860Q100 EML ID: 2718074

Approved by:

Approved Signatory Balu Krishnan Dates of Analysis: Asbestos PLM: 08-27-2021

Service SOPs: Asbestos PLM (EPA 40CFR App E to Sub E of Part 763 & EPA METHOD 600/R-93-116, SOP EM-AS-S-1267) NVLAP Lab Code 200738-0

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the samples as received and tested. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

6301 NW 5th way, Suite#: 1410, Ft. Lauderdale, FL 33309 (866) 871-1984 Fax (954) 776-8485 www.emlab.com

Client: Cardno C/O: W. Ashton Smithwick Re: CH860Q100

ASBESTOS PLM REPORT

Total Samples Submitted:	6	
Total Samples Analyzed:	6	
Total Samples with Layer Asbestos Content > 1%:	2	

Date of Receipt: 08-25-2021

Date of Report: 08-27-2021

Location: RP-01-01, Shingles

Sample Layers	Asbestos Content
Black Roofing Shingle with Gray pebbles	ND
Composite Non-Asbestos Content:	15% Glass Fibers
Sample Composite Homogeneity:	Good

Location: RP-01-02, Shingles

Sample Layers	Asbestos Content
Black Roofing Shingle with Gray pebbles	ND
Composite Non-Asbestos Content:	15% Glass Fibers
Sample Composite Homogeneity:	Good

Location: RP-02-01, Drywall

Location. KI -02-01, DI ywan	
Sample Layers	Asbestos Content
White Texture with Paint	2% Chrysotile
Cream Tape	ND
White Joint Compound	2% Chrysotile
White Drywall with Brown Paper	ND
Composite Asbestos Fibrous Content:	<1% Asbestos
Composite Non-Asbestos Content:	15% Cellulose
Sample Composite Homogeneity:	Moderate

Comments: Composite asbestos content provided is only for Drywall/Joint compound. Composite content provided for this analysis has been performed by following the NESHAP guidelines.

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. Eurofins EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

I ah ID-Version * 13001099-1

Lab ID-Version 13001098-1

Lab ID-Version 13001097-1

Lab ID-Version #: 13001100-1

Lab ID-Version #: 13001101-1

Lab ID-Version 13001102-1

6301 NW 5th way, Suite#: 1410, Ft. Lauderdale, FL 33309 (866) 871-1984 Fax (954) 776-8485 www.emlab.com

Client: Cardno C/O: W. Ashton Smithwick Re: CH860Q100

Date of Receipt: 08-25-2021 Date of Report: 08-27-2021

ASBESTOS PLM REPORT

Location: RP-02-02, Drywall

Sample Layers	Asbestos Content
Cream Tape	ND
White Joint Compound	2% Chrysotile
White Drywall with Brown Paper	ND
Composite Asbestos Fibrous Content:	< 1% Asbestos
Composite Non-Asbestos Content:	15% Cellulose
Sample Composite Homogeneity:	Moderate

Comments: Composite asbestos content provided is only for Drywall/Joint compound. Composite content provided for this analysis has been performed by following the NESHAP guidelines.

Location: RP-03-01, Gray Caulk

Sample Layers	Asbestos Content
Gray Caulk with Paint	ND
Sample Composite Homogeneity:	Good

Location: RP-03-02, Gray Caulk

Sample Layers	Asbestos Content
Gray Caulk with Paint	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. Eurofins EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Eurofins EPK Built Environment Testing, LLC

EMLab ID: 2718074, Page 3 of 3

FORMER MARKWARDT BROTHERS GARAGE

APPENDIX

GPR DATA INC., GROUND PENETRATING RADAR SURVEY, AUGUST 18, 2021

August 18, 2021

GPR Data, Inc Project No. 2021-16333-GPR

Cardno

6611 Bay Circle, Suite 220 Norcross, Georgia 30071 229.224.0164 | william.smithwick@cardno.com

Attention: W. Ashton Smithwick

Subject: Ground Penetrating Radar (GPR) Survey 112 W Chocktoot St. Chiloquin, OR 97624

Dear W. Ashton Smithwick,

GPR Data Inc. is pleased to submit this report describing our recent GPR survey at 112 W Chocktoot St. in Chiloquin, Oregon. The purpose of this survey was to locate underground storage tanks (USTs) in 2 locations at the property and locate utilities and other obstructions in 9 locations for soil boring. Our scope of services consisted of a surface reconnaissance, a subsurface exploration, analysis, and report preparation. Authorization to proceed with our survey was given by W. Ashton Smithwick of Cardno prior to our preforming the work.

This report has been prepared in accordance with general accepted geophysical engineering practice for the exclusive use of Cardno and their agents, for specific application to this project. Use or reliance upon this report by a third party is at their own risk. GPR Data, Inc. does not make any representation or warranty, express or implied, to such other parties as to the accuracy or completeness of this report or the suitability of its use by such other parties for any purpose whatever, known or unknown, to GPR Data, Inc.

Please see the link below for a full service disclaimer.

We appreciate the opportunity to be of service to you. If you have any questions, or if we can be of further assistance to you, please contact us at 541.345.1075.

Respectfully Submitted,

GPR Data, Inc.

Ground Penetrating Radar is a safe and accurate means of locating Post-tension Cable, Rebar, Conduit, Voids, Tanks & Utilities. But like any locating method the results cannot be guaranteed. Cutting, coring, and digging operations should be performed with caution. For full service disclaimer visit: <u>www.GPRDATA.com/service-disclaimer</u>

Project Description:

GPR Data Inc. is tasked with 2 objectives at 112 W Chocktoot St. in Chiloquin, Oregon:

Task 1: Survey 2 locations for presence of USTs.

Task 2: Locate utilities and other obstructions in 9 locations for soil boring

Site Vicinity: Page 3

Exploratory Methods:

Sean Matthews (GPRDI Operator# 6585-1446) explored surface and subsurface conditions at the project site on August 17th, 2021. The surface exploration consisted of a visual site reconnaissance.

<u>Task 1, UST surveys</u>: The subsurface exploration consisted of use of a 400 MHz GPR antenna connected to a SIR3000 receiving unit. Data was collected for post-processing and 3D modeling.

<u>Task 2, clearing soil boring locations</u>: The subsurface exploration consisted of use of a 400 MHz GPR antenna connected to a SIR3000 receiving unit, RD8000 radio-detection, and a Fisher TW-6 M-scope. Utilities and other obstructions in the area of proposed soil bores were field marked in pink paint.

The specific location of the site GPR survey was directed by W. Ashton Smithwick. The depth of survey was determined by local subsurface conditions, in this case, to a depth of 8'.

3D Modeling & Processing:

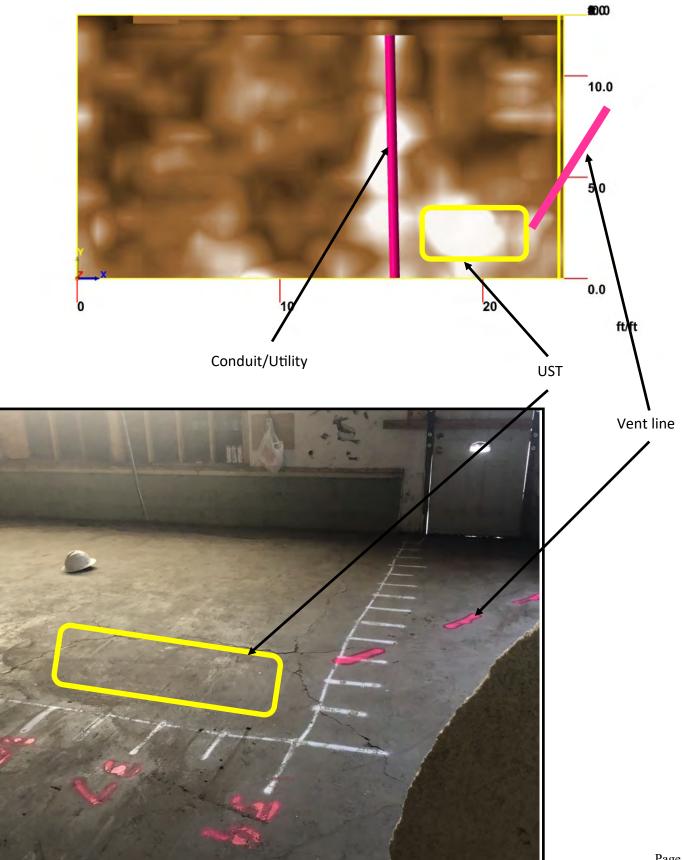
A logarithmic processing code was written based upon local subsurface conditions and concrete conductivity properties. This processing code was designed to filter and clean the GPMR data to produce the clearest images possible depicting the concrete characteristics, voiding, and subsurface conditions. Post processed data sets were then built into a three dimensional model of X, Y, & Z amplitude slices. Each slice was then analyzed and reported.

Detailed Findings:

- A UST was discovered in the 3D processed data. The UST is approximately 6'x3' cigar shaped.
- A vent line was located running from the UST at a 45 degree angle to the wall. And a possible product line associated with the tank. See page 4.
- No other tanks were discovered in any additional GPR data collected.

GPR Data Inc. 2580 Edgewater Drive Eugene, OR 97401 (541) 345-1075 <u>GPRDATA.com</u>

Site Vicinity - 42.576110° -121.862247°



UST Survey—Location 1 3D GPR Rendering

GPR Data Inc. 2580 Edgewater Drive Eugene, OR 97401 (541) 345-1075 <u>GPRDATA.com</u>

About Cardno

Cardno is an ASX-200 professional infrastructure and environmental services company, with expertise in the development and improvement of physical and social infrastructure for communities around the world. Cardno's team includes leading professionals who plan, design, manage, and deliver sustainable projects and community programs. Cardno is an international company listed on the Australian Securities Exchange [ASX:CDD].

Cardno Zero Harm

At Cardno, our primary concern is to develop and maintain safe and healthy conditions for anyone involved at our project worksites. We require full compliance with our Health and Safety Policy Manual and established work procedures and expect the same protocol from our subcontractors. We are committed to achieving our Zero Harm goal by continually improving our safety systems, education, and vigilance at the workplace and in the field. Safety is a Cardno core value and

through strong leadership and active employee participation, we seek to implement and reinforce these leading actions on every job, every day.

www.cardno.com